Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

12474 results about "Fuselage" patented technology

The fuselage (/ˈfjuːzəlɑːʒ/; from the French fuselé "spindle-shaped") is an aircraft's main body section. It holds crew, passengers, and cargo. In single-engine aircraft it will usually contain an engine, as well, although in some amphibious aircraft the single engine is mounted on a pylon attached to the fuselage, which in turn is used as a floating hull. The fuselage also serves to position control and stabilization surfaces in specific relationships to lifting surfaces, which is required for aircraft stability and maneuverability.

Helicopter with multi-rotors and wireless capability

The present invention relates to a helicopter having a modular airframe, with multiple layers which can be connected easily, the layers which house the electronics (autopilot and navigation systems), batteries, and payload (including camera system) of the helicopter. The helicopter has four, six, and eight rotors, which can be easily changed via removing one module of the airframe. In one embodiment, the airframe has a vertical stacked appearance, and in another embodiment, a domed shape (where several of the layers are stacked internally). In one embodiment, there is a combination landing gear and camera mount. The helicopter allows for simple flight and usage by remote control, and non-remote control, users.
Owner:GEOTECH ENVIRONMENTAL EQUIP

Method and apparatus for manufacturing composite structures

Composite structures having a single continuous skin may be formed using automated fiber placement methods. These composite structures include frameless aircraft fuselage components offering an increased interior cabin width over conventional fuselage components. The composite structures may be constructed of multiple layers of fibers and other materials placed on a fiber placement tool that includes a mandrel body surrounded by a bladder or an integral bladder / caul sheet having expansion spaces created within the caul sheet section. Uncured composite structures may be created by placing fibers around the fiber placement tool in a plurality of discontinuous segments that are capable of moving or sliding in relation to each other so that the uncured composite structure is expandable from within. Fluid openings may be provided in the outer surface of the mandrel body for the application of vacuum and / or fluid pressure to secure the bladder to the mandrel body and to assist in the removal of the bladder from the mandrel body, respectively. Uncured composite structures may be sealed between the bladder and is clam shell molds. The uncured structures may be expanded against the inner surface of the molds by creating a vacuum between the bladder and molds.
Owner:BEECHCRAFT

Ducted fan vertical take-off and landing vehicle

A vertical take-off and landing vehicle comprised of a fuselage having a front, a rear, and two lateral sides and a set of four thrusters set to the front, the left, the right, and the rear of said fuselage. The thrusters are either independently powered thrusters or could utilize a single power source. The thrusters, which are ducted fan units capable of providing a vertically upward force to the aircraft, are provided with such redundancy that the aircraft can hover with up to two thrusters inoperative. The thrusters are comprised of a set of two counter rotating propellers both of which creates lift. The two counter rotating propellers cancel out the torque effect normally created by using only one propeller. The Ducted fan units being movable between a first position in which they provide vertical lift and a second position in which they provide horizontal thrust using a set of servos and gears.
Owner:WALTON JOH PAUL CHRISTOPHER

Multibody aircrane

InactiveUS20090152391A1Precise and timely point to point transferEfficient powerCargo handling apparatusPassenger handling apparatusLow speedControl line
The MULTIBODY AIRCRANE performs relative positioning, predictive control, and ballast control to achieve very heavy-lifting tasks on land or sea. Such tasks allow station keeping and precise transfer of very heavy payloads between ships underway. This scalable multibody system features three subcomponents: AIRSHIP, SKYCRANE and LOADFRAME. This semi-autonomous system combines aerodynamic (kinetic) and aerostatic (buoyancy force) lift with efficient power and propulsion. During low-speed flight, the Airship and Skycrane are decoupled but linked via a reelable Tether Control Line. Beneath the Skycrane, centered on its hull, a patented NIST (National Institute of Standards and Technology) RoboCrane (featuring a computer controlled six degrees of freedom (DoF) cabling system,) is attached, to precisely suspend and control a Loadframe, with or without payload. During subsonic forward flight, these Airship and Skycrane are coupled as a single airframe (fuselage and delta wing.)
Owner:MCWHIRK BRUCE KIMBERLY

Quad tilt rotor aerial vehicle with stoppable rotors

InactiveUS20110001020A1Eliminate needIncrease vehicle aerodynamic efficiencyUnmanned aerial vehiclesRemote controlled aircraftFlight vehicleFuselage
The disclosed invention consists of several improvements to well known Quad Tilt-Rotor (QTR) aircraft. The first is that during a wing-borne flight, one pair of tilt-rotors, which can be substantially larger than the other pair, is feathered and stopped. This can promote vehicle aerodynamic efficiency and can be utilized to increase vehicle speed. Second is that the wings are not attached to the fuselage at a fixed angle of incidence like on conventional QTR aircraft, but can also be tilted in respect to the fuselage independently of the tilt-rotors. Furthermore, each rotor and each wing can be tilted with respect to fuselage to any tilt-angle without limit, which gives the vehicle unprecedented ability to position the fuselage in any attitude in respect to the vehicle direction of flight.
Owner:FORGAC PAVOL

Parallel Hybrid-Electric Propulsion Systems for Unmanned Aircraft

An unmanned air vehicle is provided, which includes an airframe and a parallel hybrid-electric propulsion system mounted on the airframe. The parallel hybrid-electric propulsion system includes an internal combustion engine and an electric motor. A hybrid controller is configured to control both the internal combustion engine and the electric motor. A propeller is connected to a mechanical link. The mechanical link couples the internal combustion engine and the electric motor to the propeller to drive the propeller. An alternate unmanned air vehicle includes a second propeller driven by the electric motor. In this alternate unmanned air vehicle, the internal combustion engine is decoupled from the electric motor.
Owner:GOVERNMENT OF THE UNITED STATES AS REPRESENTD BY THE SEC OF THE AIR FORCE

Shell component for an aircraft fuselage and method of manufacturing the same

A shell component for an aircraft fuselage includes a fuselage skin panel, a plurality of stringers extending in an aircraft lengthwise direction, and a plurality of frames extending crosswise relative to the stringers. The stringers and the frames are respectively welded onto the skin panel with the addition of a weld filler material. Each frame includes a frame root portion and a frame profile portion connected to each other. The frame root portion has cut-out notches receiving the stringers passing therethrough. The frame root portion is welded to the skin panel at the areas between the cut-out notches, and may be welded to the respective stringer in each cut-out notch. The stringers and frames are fabricated from webs and flanges, whereby a premanufactured grid of flanges may be used. The result is a very strong, yet simple shell component structure, that may be manufactured with a simple welding process, at a low cost and with low effort.
Owner:DAIMLER CHRYSLER AEROSPACE AIRBUS

Low pressure, extended coverage, upright fire protection sprinkler

InactiveUS6976543B1Increased heat release rateDeplete supplySpray nozzlesFire rescueExtended coverageFire protection
A low pressure, extended coverage, fire protection sprinkler, e.g., of the upright type, suitable for use in protection of at least extra hazard and high piled storage occupancies, in accordance with the 1999 Edition of NFPA 13, has a body with an internal passageway extending between an inlet end and an opposite outlet end, and a deflector mounted to the body by at least one support arm and disposed in alignment with the axis and generally spaced from the outlet end of the internal passageway. The sprinkler has a predetermined K-factor, e.g., of greater than about 16.0. The sprinkler is configured and arranged to deflect flow of water generally radially outwardly and downwardly of the sprinkler in a predetermined spray pattern. Preferably, the predetermined spray pattern has a generally polygonal shape, e.g., a rectangular shape, when viewed at a predetermined distance below the deflector.
Owner:TYCO FIRE PRODS LP

Quiet vertical takeoff and landing aircraft using ducted, magnetic induction air-impeller rotors

A hover aircraft employs an air impeller engine having an air channel duct and a rotor with outer ends of its blades fixed to an annular impeller disk that is driven by magnetic induction elements arrayed in the air channel duct. The air-impeller engine is arranged vertically in the aircraft frame to provide vertical thrust for vertical takeoff and landing. Preferably, the air-impeller engine employs dual, coaxial, contra-rotating rotors for increased thrust and gyroscopic stability. An air vane assembly directs a portion of the air thrust output at a desired angle to provide a horizontal thrust component for flight maneuvering or translation movement. The aircraft can employ a single engine in an annular fuselage, two engines on a longitudinal fuselage chassis, three engines in a triangular arrangement for forward flight stability, or other multiple engine arrangements in a symmetric, balanced configuration. Other flight control mechanisms may be employed, including side winglets, an overhead wing, and / or air rudders or flaps. An integrated flight control system can be used to operate the various flight control mechanisms. Electric power is supplied to the magnetic induction drives by high-capacity lightweight batteries or fuel cells. The hover aircraft is especially well suited for applications requiring VTOL deployment, hover operation for quiet surveillance, maneuvering in close air spaces, and long duration flights for continuous surveillance of ground targets and important facilities requiring constant monitoring.
Owner:SANDERS JR JOHN K +3

Vertical take-off and landing (VTOL) aircraft with distributed thrust and control

An aircraft having a vertical take-off and landing (VTOL) propulsion system. The aircraft includes a fuselage, the VTOL propulsion system, at least one forward thruster, a power source used for both the VTOL propulsion system and forward thruster, fore and aft wings and a plurality of spars attached to and spanning the space between the two wings. The VTOL propulsion system includes a plurality of VTOL cells (including a motor, motor controller, and propeller) attached in a spaced relation along each spar. The VTOL cells are used exclusively for vertical flight or hovering and are powered down as the aircraft develops forward flight velocity and corresponding wing lift. During forward flight the VTOL propellers are articulated to allow the aircraft to take on a low drag configuration. The present invention is suitable for use in manned or un-manned aircraft of any scale.
Owner:VANDERMEY TIMOTHY +1

Airplane component attitude adjusting and butting system based on four numeric control positioners, attitude adjusting platform and mobile bracket and corresponding method

InactiveCN102001451ARealize digital positioningRealize dockingAircraft assemblyLaser trackerFuselage
The invention discloses an airplane component attitude adjusting and butting system based on four numeric control positioners, attitude adjusting platform and mobile bracket and a corresponding method. The system comprises a mobile bracket, an attitude adjusting platform, numeric control positioners, a numeric control positioner group guide rail, an upper computer, a ball hinge connection mechanism and a laser tracker. The attitude adjusting and butting method includes the following steps: 1) the mobile bracket is fixed onto the attitude adjusting platform and is supported by the numeric control positioner; 2) fuselage is arranged in place; 3) a site assembly coordinate system and a local coordinate system solidified on the fuselage are established; 4) the current attitude of fuselage A is measured and calculated; 5) motion path of the numeric control positioner is planned; 6) the attitude of the fuselage A is adjusted; 7) coordinates of a butt hole are measured and target attitude offuselage B is calculated; 8) the current attitude of fuselage B is calculated; 9) the attitude of the fuselage B is adjusted; 10) fuselage is butted; 11) the system is reset; 12) the mobile bracket is removed. The invention has the advantages that digitalized attitude adjusting and butting of airplane components are realized and adaptability is strong.
Owner:ZHEJIANG UNIV

Vertical take-off and landing (VTOL) aircraft with distributed thrust and control

An aircraft having a vertical take-off and landing (VTOL) propulsion system. The aircraft includes a fuselage, the VTOL propulsion system, at least one forward thruster, a power source used for both the VTOL propulsion system and forward thruster, fore and aft wings and a plurality of spars attached to and spanning the space between the two wings. The VTOL propulsion system includes a plurality of VTOL cells (including a motor, motor controller, and propeller) attached in a spaced relation along each spar. The VTOL cells are used exclusively for vertical flight or hovering and are powered down as the aircraft develops forward flight velocity and corresponding wing lift. During forward flight the VTOL propellers are articulated to allow the aircraft to take on a low drag configuration. The present invention is suitable for use in manned or un-manned aircraft of any scale.
Owner:VANDERMEY TIMOTHY +1

Long endurance vertical takeoff and landing aircraft

An aircraft for use in fixed wing flight mode and rotor flight mode is provided. The aircraft can include a fuselage, wings, and a plurality of engines. The fuselage can comprise a wing attachment region further comprising a rotating support. A rotating section can comprise a rotating support and the wings, with a plurality of engines attached to the rotating section. In a rotor flight mode, the rotating section can rotate around a longitudinal axis of the fuselage providing lift for the aircraft similar to the rotor of a helicopter. In a fixed wing flight mode, the rotating section does not rotate around a longitudinal axis of the fuselage, providing lift for the aircraft similar to a conventional airplane. The same engines that provide torque to power the rotor in rotor flight mode also power the aircraft in fixed wing flight mode.
Owner:DZYNE TECH

Electric nose suction-washer

An improvement on the structure of electric nose suction-washer consists of a body for grip and for casing a motor mechanism. At the tip of the body are the suctioning and washing units of the motor mechanism for sucking nasal fluid or washing the nasal cavity. Therein, the body is cylindrical at a suitable place of which is a droplet shaped protrusion for easy gripping. Inside a bottom of the body encases the battery case where a spring plate exists for ease of replacing batteries and for forming power connection to the motor mechanism. The inner wall of the battery case is a plurality of vertical ridges for positioning and fastening the battery case.
Owner:CHANG HUEYDY

Ducted fan VTOL vehicles

A vehicle including a fuselage having a longitudinal axis and a transverse axis, two Ducted Fan lift-producing propellers carried by the fuselage on each side of the transverse axis, a pilot's compartment formed in the fuselage between the lift-producing propellers and substantially aligned with one side of the fuselage, a payload bay formed in the fuselage between the lift-producing propellers and opposite the pilot's compartment, and two pusher fans located at the rear of the vehicle. Many variations are described enabling the vehicle to be used not only as a VTOL vehicle, but also as a multi-function utility vehicle for performing many diverse functions including hovercraft and ATV functions. Also described is an Unmanned version of the vehicle. Also described are unique features applicable in any single or multiple ducted fans and VTOL vehicles.
Owner:URBAN AERONAUTICS

Fire-blocking insulation blanket

An insulation blanket is disclosed that contains fire-blocking materials for preventing rapid penetration of fire into an aircraft fuselage in case of a fire outside the aircraft. The insulation blanket contains at least one layer of fiberglass or other thermal-acoustic insulation material without fire-blocking properties, and one or more layers of fire-blocking material. The fire blocking material is wider than the thermal-acoustic insulation so that it may be folded against and attached to adjacent structural frame members of the fuselage. In the alternative, a thermal-acoustic insulation material is used that has fire-blocking properties instead of the separate layers of fire-blocking and thermal-acoustic insulation materials. A method for installing insulation blankets according to the present invention is disclosed, whereby a fire-blocking insulation portion of the blanket is folded against and attached to frame members of the aircraft using attachment posts or spring clips.
Owner:ORCON CORP

Modularized integrated aircraft seat structure

An aircraft is provided comprising a fuselage and a central monitoring system positioned within the fuselage. A plurality of seating elements is also positioned within said fuselage. Each of the plurality of seating elements includes a plurality of seat options integrated into the seating element and an electronics control system integrated into the seating element. The electronics control system includes a seat processor having logic adapted to monitor an operational status of each of the seat options and communicate the operational status to the central monitoring system via wireless communication.
Owner:THE BOEING CO

Aircraft capable of vertical and short take-off and landing

Aircraft comprising an airframe having a forward end, an aft end opposite the forward end, a top extending between the forward end and the aft end, and a bottom opposite the top side. The aircraft further includes a power plant mounted on the airframe. In addition, the aircraft includes at least two propellers rotatably mounted on the airframe and powered by the power plant for moving the aircraft in a generally forward direction during operation of the propellers. Also, the aircraft includes at least two counter-rotatable fan sets mounted on the airframe and powered by the power plant for providing upward lift to the aircraft during operation of the fan sets.
Owner:THE BOEING CO

Adjustable disposable/single-use lancet device and method

Adjustable Single-use lancet device that includes a body. A trigger is mounted to the body. A skin engaging end includes a lancet opening through which a lancet needle extends. A holding member is movably mounted within the body and includes a front end a rear end. The front end receives a lancet needle. A stop surface moves with the holding member. A cam disk includes cam surfaces which can be contacted by the stop surface. The cam disk is configured to rotate at least partially. The cam disk rotates about an axis that is not parallel to an axis running through at least one of the lancet opening and the holding member. Once caused to move to the extended position by the trigger, the holding member is prevented from moving back to the retracted position. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
Owner:STAT MEDICAL DEVICES

Gyro-stabilized air vehicle

A vertical takeoff and landing (VTOL) air vehicle disclosed. The air vehicle can be manned or unmanned. In one embodiment, the air vehicle includes two shrouded propellers, a fuselage and a gyroscopic stabilization disk installed in the fuselage. The gyroscopic stabilization disk can be configured to provide sufficient angular momentum, by sufficient mass and / or sufficient angular velocity, such that the air vehicle is gyroscopically stabilized during various phases of flight. In one embodiment the fuselage is fixedly attached to the shrouded propellers. In another embodiment, the shrouded propellers are pivotably mounted to the fuselage.
Owner:BOSTAN NICOLAE

One-piece barrel assembly cart

A one-piece barrel assembly cart includes a right assembly cart base connected with a left assembly cart base and at least three stabilizer rings that are attached to the assembly cart base. The one-piece barrel assembly cart may be used to stabilize a tapered cured composite barrel, for example the large fuselage barrel of the aft section of a large new generation aircraft, such as a 7E7 Boeing airplane. A modular assembly cart includes at least two identical modules. Each of these modules includes a cart base and a stabilizer ring. The diameter of the inner surface of the stabilizer ring may vary as needed. Other modules including a fuselage support may be added. By providing modular assembly carts any shape and size of a one-piece composite barrel may be stabilized after curing of the composite material.
Owner:THE BOEING CO

Three Wing, Six Tilt-Propulsion Units, VTOL Aircraft

A vertical takeoff and landing aircraft having a fuselage with three wings and six synchronously tilt-able propulsion units, each one mounted above, below, or on each half of the aforementioned three wings. The propulsion units are vertical for vertical flight, and horizontal for forward flight. The aircraft wings are placed such that the rear wing is above the middle wing which is placed above the front wing. The placement of each of the propulsion units relative to the center of gravity of the aircraft about the vertical axis inherently assures continued stability in vertical flight mode, following the loss of thrust from any one propulsion unit. The placement of the propulsion units, viewing the aircraft from the front, is such that each propulsion units' thrust wake does not materially disturb the propulsion unit to its rear. When engine driven propellers or rotors are utilized, flapped wing panels are attached outboard of the forward and / or rearward propulsion units to provide yaw control during vertical flight.
Owner:OLIVER VTOL

Ducted fan VTOL vehicles

A VTOL vehicle comprising a fuselage having forward and aft propulsion units, each propulsion unit comprising a propeller located within an open-ended duct wall wherein a forward facing portion of the duct wall of at least the forward propulsion unit is comprised of at least one curved forward barrier mounted for horizontal sliding movement to open the forward facing portion to thereby permit air to flow into the forward facing portion when the VTOL vehicle is in forward flight.
Owner:URBAN AERONAUTICS

Air vehicle having rotor/scissors wing

An air vehicle, such as a manned or unmanned air vehicle, has a fuselage, a rotor / scissors wing, and a scissors wing. At helicopter mode, the rotor / scissors wing rotates to make the air vehicle fly like a helicopter to achieve vertical and / or short take-off and landing, hovering, and low speed flying. At airplane mode, the rotor / scissors wing and scissors wing form a scissors wings configuration to maximize the air vehicle's flying efficiency at a wide range of speed and flying conditions by adjusting the yaw angle of the rotor / scissors wing and scissors wing. During the conversion from helicopter mode to airplane mode, the scissors wing generates lift to offload the rotating rotor / scissors wing and eventually the offloaded rotor / scissors wing's rotating speed is slowed and stopped so that the rotor / scissors wing can be locked at a specific position and the conversion can be achieved. In a reverse order, the air vehicle can convert from airplane mode to helicopter mode. Either turbofan or turbojet engine, or turboshaft / turbofan convertible engine can be used to power the air vehicle.
Owner:CHEN ZHUO

Aircraft with active center of gravity control

A supersonic aircraft comprises a wing, a fuselage, a plurality of fuel tanks contained within the wing and / or fuselage, and a fuel transfer system communicatively coupled to the plurality of fuel tanks and capable of transferring fuel among the plurality of fuel tanks. The aircraft further comprises at least one sensor capable of indicating a flight parameter and a controller. The controller is coupled to the one or more sensors and to the fuel transfer system. The controller can transfer fuel among the plurality of fuel tanks and adjust the aircraft center of gravity to reduce trim drag and increase aircraft range.
Owner:SUPERSONIC AEROSPACE INT

Hybrid Propulsion Vertical Take-Off and Landing Aircraft

ActiveUS20170203839A1Out of synchronizationAircraft power plant componentsWingsRotary wingFuselage
A hybrid propulsion aircraft is described having a distributed electric propulsion system. The distributed electric propulsion system includes a turbo shaft engine that drives one or more generators through a gearbox. The generator provides AC power to a plurality of ducted fans (each being driven by an electric motor). The ducted fans may be integrated with the hybrid propulsion aircraft's wings. The wings can be pivotally attached to the fuselage, thereby allowing for vertical take-off and landing. The design of the hybrid propulsion aircraft mitigates undesirable transient behavior traditionally encountered during a transition from vertical flight to horizontal flight. Moreover, the hybrid propulsion aircraft offers a fast, constant-altitude transition, without requiring a climb or dive to transition. It also offers increased efficiency in both hover and forward flight versus other VTOL aircraft and a higher forward max speed than traditional rotorcraft.
Owner:AURORA FLIGHT SCI CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products