Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

41671 results about "Internal combustion engine" patented technology

An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful mechanical energy.

System and method for minimizing energy consumption in hybrid vehicles

The present invention provides a system and method relating to the operation of plug-in hybrid electric vehicles powered both by electricity from rechargeable batteries and by consumable fuel powered means, such as an internal combustion engine or a fuel cell. More particularly, the system and method of the claimed invention enable optimization of the energy cost associated with the operation of such plug-in hybrid electric vehicles, especially when the cost of recharging batteries from external electric power sources may be less than the cost of recharging batteries from the onboard consumable fuel powered means. To this end, the invention enables maximization of the use of electricity from external electric power sources and minimization of the use of electricity produced by the plug-in hybrid electric vehicle's onboard consumable fuel powered means, when the cost of recharging batteries from external electric power sources is less than the cost of recharging batteries from the onboard consumable fuel powered means.
Owner:SLINGSHOT IOT LLC

Opposed piston internal combustion engine with inviscid layer sealing

An opposed-piston engine that forms an inviscid layer between pistons and the respective cylinder walls. In an aspect, the opposed-piston engine utilizes a Scotch yoke assembly that includes rigidly connected opposed combustion pistons. In an aspect, the Scotch yoke assembly is configured to transfer power from the combustion pistons to a crankshaft assembly. In an aspect, the crankshaft assembly can be configured to have dual flywheels that are internal to the engine, and can be configured to assist with an exhaust system, a detonation system, and / or a lubrication system.
Owner:PRIME GRP ALLIANCE

Internal combustion engine with a single crankshaft and having opposed cylinders with opposed pistons

A two-stroke internal combustion engine is disclosed having opposed cylinders, each cylinder having a pair of opposed pistons, with all the pistons connected to a common central crankshaft. The inboard pistons of each cylinder are connected to the crankshaft with pushrods and the outboard pistons are connected to the crankshaft with pullrods. This configuration results in a compact engine with a very low profile, in which the free mass forces can be essentially totally balanced. The engine configuration also allows for asymmetrical timing of the intake and exhaust ports through independent angular positioning of the eccentrics on the crankshaft, making the engine suitable for supercharging.
Owner:ADVANCED PROPULSION TECH +1

Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia

Provided is an emissions treatment system and method for reducing NOx emissions in the exhaust stream produced from an internal combustion engine. The system has an injector for periodically metering ammonia or an ammonia precursor into an exhaust stream; and a first substrate with a first SCR catalyst composition, downstream of the injector. The first substrate has an inlet end, an outlet end, a length extending between the inlet end to the outlet end, wall elements and a plurality of passages defined by the wall elements. The first SCR catalyst composition is disposed on the wall elements from the inlet end toward the outlet end to a length that is less than the substrate's axial length to form an inlet zone. The first substrate also has an NH3 destruction catalyst composition with a platinum group metal component dispersed on a refractory metal oxide. The NH3 destruction catalyst is disposed on the wall elements from the outlet end toward the inlet end to a length that is less than the substrate's axial length to form an outlet zone. Generally, there is from 0.1 to 10 g / ft3 of platinum group metal component in the outlet zone.
Owner:BASF CATALYSTS LLC

Heat energy recapture and recycle and its new applications

What has been created is a plurality and a variety of processes and a variety of devices correspondingly supportive to each process, wherein, a new partnership between; (1) a heat absorbing radiator compressed air pipes / tubes and (2) a gas turbine engine or a reciprocating piston engine,—is used to recapture and reconvert the, otherwise wasted, heat energies expelled by engines, by factories, by smelting plants, by distillation plants, by chillers / coolers / freezers, by cooking ovens, by lamps / stoves, by trash burners, and the heat energies created by the solar heat on the desert / ocean water,—into electric power and finally into hydrogen-deuterium fuel,—by having the engine's tailpipes submerged in cold compressed air inside the heat absorbing radiator pipes in reverse air flow, to further drive and re-drive the same engine; wherein, in order to capture fusion heat energy the hydrogen bomb is detonated in the deep ocean to catch the flames by the water and the hot water is used to energize the compressed air inside the heat absorbing radiator pipes; wherein, in order to produce fusion energy, an abundant electric arc is passed across liquid deuterium or across gaseous deuterium by the electro-plasma torch and sparkplug in the internal combustion engine, and by detonating a dynamite inside a liquid deuterium; wherein diamond is produced by placing carbon inside the hydrogen bomb; and wherein, deuterium fusion flame is used first in smelting glass to large sizes before running an engine.
Owner:CHRISTIAN SCHOOL OF TECH CHARITABLE FOUND TRUST

Thermal management systems and methods

A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Owner:BATTELLE ENERGY ALLIANCE LLC

Control system architecture for a hybrid powertrain

A control apparatus for a powertrain system comprising an engine and two electrical machines operably coupled to a two-mode compound-split electro-mechanical transmission is provided. It includes a system controller and two motor control processors. The system controller communicates with the motor control processors via two high speed communications buses and directly-linked serial peripheral interface buses. The motor control processors control flow of electrical power between the electrical machines and an electrical energy storage device. A second control device is operable to control the engine, preferably to control torque output. The internal combustion engine preferably has a crank position sensor which is signally connected to a dedicated input to the second control device and to a dedicated input to the system controller of the first control device.
Owner:ELECTRONICS DATA SYST CORP +1

System and method for generating and sustaining a corona electric discharge for igniting a combustible gaseous mixture

The invention relates to a system for igniting a fuel-air mixture in a combustion chamber with a corona discharge. The system comprises an electrode inside of the combustion chamber, an electric circuit which provides radio frequency electric power to the electrode, and a ground formed by the combustion chamber walls. A radio frequency voltage differential formed between the electrode and the ground produces a radio frequency electric field therebetween which causes a fuel-air mixture to ionize resulting in combustion of the fuel-air mixture. The system can be utilized in engines such as internal combustion engines or gas turbine engines, for example.
Owner:BORGWARNER INC

Parallel Hybrid-Electric Propulsion Systems for Unmanned Aircraft

An unmanned air vehicle is provided, which includes an airframe and a parallel hybrid-electric propulsion system mounted on the airframe. The parallel hybrid-electric propulsion system includes an internal combustion engine and an electric motor. A hybrid controller is configured to control both the internal combustion engine and the electric motor. A propeller is connected to a mechanical link. The mechanical link couples the internal combustion engine and the electric motor to the propeller to drive the propeller. An alternate unmanned air vehicle includes a second propeller driven by the electric motor. In this alternate unmanned air vehicle, the internal combustion engine is decoupled from the electric motor.
Owner:GOVERNMENT OF THE UNITED STATES AS REPRESENTD BY THE SEC OF THE AIR FORCE

Dynamic Cylinder Deactivation with Residual Heat Recovery

Cylinder deactivation is a proven solution to improve engine fuel efficiency. The present invention is related to Dynamic Cylinder Deactivation (DCD) solution to conventional internal combustion engine. DCD is an energy saving method based on engine thermodynamics and residual heat recovery. It deactivates all the cylinders within the engine alternatively and dynamically, totally different from traditional sealed-valves cylinder deactivation solutions. DCD has many advantages over traditional sealed-valves cylinder deactivation. Thermodynamic efficiency gain, residual heat recovery, high Lambda and “Air-Hybrid” are the most attractive features of DCD. DCD also makes engine displacement variable.
Owner:ZHAO YUANPING +1

Island network and method for operation of an island network

The invention relates to an island network with at least one energy generator, using regenerative energy sources, whereby the energy generator is preferably a wind energy plant with a first synchronous generator, a DC link, at least one first power rectifier and a power inverter, a second synchronous generator and an internal combustion engine which may be coupled with the second synchronous generator. A fully controllable wind energy unit (10) and an electromagnetic coupling (34) between the second synchronous generator (32) and the internal combustion engine (30) are provided in order to establish an island network in which the internal combustion engine can be switched off completely, so long as the wind energy unit is generating enough power for all connected users with an efficiency which is as high as possible.
Owner:WOBBEN ALOYS

Method and apparatus to increase combustion efficiency and to reduce exhaust gas pollutants from combustion of a fuel

A method and apparatus is disclosed for increasing combustion efficiency in internal combustion engines and external combustors resulting in increased fuel economy and reduced exhaust pollutants. The same principles and apparatus of the invention are used in the exhaust stream to further reduce pollutants.
Owner:RONNELL

Internal combustion engine

An internal combustion engine, in which multiple kinds of fuels are fed to a cylinder from multiple fuel injectors each corresponding to each of multiple kinds of fuels at a target mixing ratio determined according to a running condition, includes an actual fuel mixing ratio calculator calculating an actual fuel mixing ratio of fuel fed to cylinder. The actual fuel mixing ratio calculator at first calculates actual fuel injection quantity of each fuel injection by adding or subtracting predetermined stuck-on-wall fuel to or from each quantity of fuel injected from each fuel injector, and then calculates an actual fuel mixing ratio of fuel fed to cylinder on the basis of the calculated actual fuel injection quantity of each fuel injector.
Owner:TOYOTA JIDOSHA KK

Method and apparatus to control engine restart for a hybrid powertrain system

There is provided a control scheme for restarting an internal combustion engine of a hybrid powertrain during ongoing vehicle operation. The method comprises generating a torque output from an electrical machine to rotate the engine, and determining an engine crank torque. The torque output from the electrical machine is selectively controlled based upon the engine crank torque. The engine is fired when rotational speed of the engine exceeds a threshold. An engine torque simulation model accurately determines engine compression pressures in real-time to accommodate changes in engine operating conditions, based upon present engine operating conditions.
Owner:GM GLOBAL TECH OPERATIONS LLC

Waste heat recovery system and thermoelectric conversion system

A waste heat recover system includes a mechanism for supplying power by use of a thermoelectric conversion unit, and a mechanism for utilizing heat released from the thermoelectric conversion unit. Heat released from the thermoelectric conversion unit is utilized for, for example, heating, defrosting, defogging, temperature keeping of fuel, temperature keeping of an internal combustion engine, and temperature keeping of a fuel cell. The waste heat recovery system is equipped in, for example, cars, incinerators, fuel cells, and industrial machinery.
Owner:SHOWA DENKO KK

Clutch control for hybrid transmission

A method and system to off-load motive torque from a clutch to execute a transmission shift is provided. The powertrain includes torque-generative devices operably connected to a two-mode, compound-split, hybrid electro-mechanical transmission. The method includes determining a commanded output torque, and a shift command. A first torque is transmitted by electrical motors, and is limited by their torque capacities. A supplemental motive torque is transmitted from an oncoming clutch. The supplemental motive torque is limited by a torque capacity of the oncoming clutch. Output torque of an internal combustion engine to the transmission is adjusted by an amount substantially equal to a difference between the commanded output torque and the first and the supplemental motive torques.
Owner:GM GLOBAL TECH OPERATIONS LLC

Power train for a motor vehicle

A power train for a motor vehicle includes a combustion engine, a clutch or other torque-coupling device, a transmission, and an electro-mechanical energy converter that is operable at least as a motor and as a generator. The electro-mechanical energy converter is coupled to the output shaft of the combustion engine through a torque transfer device with at least two rpm ratios that automatically set themselves according to whether the vehicle is operating in a start-up mode or in a driving mode.
Owner:LUK LAMELLEN & KUPPLUNGSBAU BETEILIGUNGS KG

Method for automatic traction control in a hybrid electric vehicle

A method for providing traction control in vehicle powertrain systems is particularly adapted for traction control in a powertrain system of a hybrid electric vehicle comprising an internal combustion engine, an electric machine and a transmission that is operatively coupled to the electric machine and the engine and adapted to provide a transmission torque output in response to a transmission torque input received as a torque output from either or both of the engine and the electric machine. The method is adapted to utilize conventional traction control and engine control hardware, software and communication standards to implement traction control. In one embodiment of the invention, a conventional traction controller is used to detect a wheel spin condition and provide a plurality of first output torque command messages in response thereto. The plurality of first output torque command messages are used to obtain a torque reduction which is applied to a reference output torque to obtain a corresponding plurality of traction control output torque commands for the powertrain system during the wheel spin condition. A rate limit may also be applied to control the rate of change between successive ones of the traction control output torque commands in order to reduce the possibility of extension of the wheel spin condition, or recurrence of another wheel spin condition. Each traction control output torque command may be used to determine an associated traction control engine torque output command and traction control electric machine torque output command.
Owner:GM GLOBAL TECH OPERATIONS LLC

Layered noble metal-containing exhaust gas catalyst and its preparation

A catalyst for treating exhaust gas from an internal combustion engine includes a carrier body coated with an inner layer and an outer layer. The inner layer includes platinum deposited on a first support material and on a first oxygen storage component, and the outer layer includes platinum and rhodium deposited on a second support material and on a second oxygen storage component. The first and second support materials may be the same or different, and may be selected from the group of: silica, alumina, titania, zirconia, mixed oxides or mixtures thereof, and zirconia-rich zirconia / ceria mixed oxide. The first and second oxygen storage components may include ceria-rich ceria / zirconia mixed oxide compounds, optionally including praseodymia, yttria, neodymia, lanthana or mixtures thereof.
Owner:DMC2 DEGUSSA METALS +1

Differential torque operation for internal combustion engine

A method of operating an internal combustion engine having a plurality of cylinders including at least a first cylinder and a second cylinder, the method comprising firing the first cylinder and the second cylinder in an alternating sequence; during a first mode, adjusting an operating parameter of the engine to produce a first difference between an amount of torque produced by the firing of the first cylinder and an amount of torque produced by the firing of the second cylinder; during a second mode, adjusting the operating parameter of the engine to produce a second difference between an amount of torque produced by the firing of the first cylinder and an amount of torque produced by the firing of the second cylinder; and performing the first mode at a higher engine speed than the second mode; wherein the first difference is greater than the second difference.
Owner:FORD GLOBAL TECH LLC

Thermal management systems and methods

A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Owner:BATTELLE ENERGY ALLIANCE LLC

Method of controlling engine stop-start operation for heavy-duty hybrid-electric and hybrid-hydraulic vehicles

This invention relates to a Start-Stop method for a heavy-duty hybrid vehicle that turns off the internal combustion engine when the vehicle stops or, optionally, when the vehicle travels downhill. The Stop-Start method automatically restarts the internal combustion engine when the vehicle starts accelerating or is no longer traveling downhill. The software instructions for the Stop-Start method reside within the programming of the hybrid vehicle control computer as a subset of the hybrid vehicle control strategy in hybrid-electric or hybrid-hydraulic heavy-duty vehicle. During the time the internal combustion engine is turned off the necessary vehicle accessories operate from the available power of the hybrid high power energy storage.
Owner:SHEPPARD MULLIN RICHTER & HAMPTON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products