Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

7015 results about "Electric arc" patented technology

An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma; the plasma may produce visible light. An arc discharge is characterized by a lower voltage than a glow discharge and relies on thermionic emission of electrons from the electrodes supporting the arc. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

Heat energy recapture and recycle and its new applications

What has been created is a plurality and a variety of processes and a variety of devices correspondingly supportive to each process, wherein, a new partnership between; (1) a heat absorbing radiator compressed air pipes/tubes and (2) a gas turbine engine or a reciprocating piston engine,—is used to recapture and reconvert the, otherwise wasted, heat energies expelled by engines, by factories, by smelting plants, by distillation plants, by chillers/coolers/freezers, by cooking ovens, by lamps/stoves, by trash burners, and the heat energies created by the solar heat on the desert/ocean water,—into electric power and finally into hydrogen-deuterium fuel,—by having the engine's tailpipes submerged in cold compressed air inside the heat absorbing radiator pipes in reverse air flow, to further drive and re-drive the same engine; wherein, in order to capture fusion heat energy the hydrogen bomb is detonated in the deep ocean to catch the flames by the water and the hot water is used to energize the compressed air inside the heat absorbing radiator pipes; wherein, in order to produce fusion energy, an abundant electric arc is passed across liquid deuterium or across gaseous deuterium by the electro-plasma torch and sparkplug in the internal combustion engine, and by detonating a dynamite inside a liquid deuterium; wherein diamond is produced by placing carbon inside the hydrogen bomb; and wherein, deuterium fusion flame is used first in smelting glass to large sizes before running an engine.

Electrical discharge devices and techniques for medical procedures

InactiveUS20030125727A1Enhance electron avalancheDiagnosticsSurgical instrument detailsTarget tissueMedical procedure
A medical instrument coupled to first and second energy means and a computer controller for the controlled volumetric removal of thin tissue layers. The system provides a source for introducing a gas to controllably form and capture transient gas volumes in a microchannel structure at the working surface of the instrument that interfaces with a targeted tissue site. Each of the microchannel features of the working surface carries an electrode element coupled to the electrical source. The energy may be applied to the targeted site in either of two modes of operation, depending in part on voltage and repetition rate of energy delivery. In one mode of energy application, electrical potential is selected to cause an intense electrical arc across the transient ionized gas volumes to cause an energy-tissue interaction characterized by tissue vaporization. In another preferred mode of energy delivery, the system applies selected levels of energy to the targeted site by means of an energetic plasma at the instrument working surface to cause molecular volatilization of surface macromolecules thus resulting in material removal. Both modes of operation limit collateral thermal damage to tissue volumes adjacent to the targeted site. Another preferred embodiment provides and an ultrasound source or other vibrational source coupled to the working end to cause cavitation in fluid about the working end.

Electric arc welder for variable AC input

An electric arc welder with a variable AC voltage input of up to 600 VAC and a rectifier to provide a DC link, a driven high frequency boost stage with first and second leads connected to the DC link. The boost stage comprises an inductor, a first series output branch with a first primary winding connected to the first lead and a first capacitor connected to the second lead, a second series output branch with a second primary winding connected to the second lead and a second capacitor connected to the first lead and a high frequency operated switch between the leads and having an opened condition charging said capacitors by current through the primary windings in a first direction and discharging the inductor and a closed condition charging the inductor through the primary windings by current in a second direction and discharging the inductor to charge the capacitors. The switch is operated by a power factor control circuit at a frequency greater than about 18 kHz. The boost stage has an AC output stage comprising the secondary winding network of a transformer powered by current flow in the first and second primary windings. An output rectifier converts said AC output to a first DC voltage. At the final portion of the welder an output converter converts the first DC voltage to a second DC voltage connected across the arc of a welding station and having a controlled weld current or voltage.

Filtered cathodic arc deposition method and apparatus

An apparatus for the application of coatings in a vacuum comprising a plasma duct surrounded by a magnetic deflecting system communicating with a first plasma source and a coating chamber in which a substrate holder is arranged off of an optical axis of the plasma source, has at least one deflecting electrode mounted on one or more walls of the plasma duct. In one embodiment an isolated repelling or repelling electrode is positioned in the plasma duct downstream of the deflecting electrode where the tangential component of a deflecting magnetic field is strongest, connected to the positive pole of a current source which allows the isolated electrode current to be varied independently and increased above the level of the anode current. The deflecting electrode may serve as a getter pump to improve pumping efficiency and divert metal ions from the plasma flow. In a further embodiment a second arc source is activated to coat the substrates while a first arc source is activated, and the magnetic deflecting system for the first arc source is deactivated to confine plasma to the cathode chamber but permit electrons to flow into the coating chamber for plasma immersed treatment of the substrates. A load lock shutter may be provided between the plasma duct and the coating chamber further confine the plasma from the first arc source.

Multi-stage magnetic field straight pipe magnetic filtration and pulsed bias compounded electrical arc ion plating method

ActiveCN103276362ALow ionization rateLow pulse duty cycle to generate high ionization rateVacuum evaporation coatingSputtering coatingPlasmaMagnetic filtration
The invention relates to a multi-stage magnetic field straight pipe magnetic filtration and pulsed bias compounded electrical arc ion plating method, and belongs to the technical field of material surface treatments. In the prior art, plasma transmission efficiency is low and pulsed bias can not completely remove large particles due to applying of magnetic filtration on an arc source. A purpose of the present invention is to solve problems in the prior art. The method comprises: 1, connecting a workpiece to a pulsed bias power supply, connecting an electrical arc ion plating target source to a target power supply, and connecting a multi-stage magnetic field straight pipe magnetic filtration device in front of the target source; 2, carrying out thin film deposition, wherein work gas is introduced until achieving 0.01-10 Pa when a pressure in a vacuum chamber is less than 10<-2> Pa, the pulsed bias power supply is opened, a pulsed bias amplitude value, frequency and a duty ratio are adjusted, the target power supply is opened, plasma is generated, the multi-stage magnetic field straight pipe magnetic filtration device is opened, removal of large particles and efficient transmission of the plasma in the magnetic filtration device are achieved, process parameters are adjusted, and a thin film with no large particle defect is rapidly produced; and 3, adopting a single-stage magnetic field to combine direct current/pulsed bias to obtain a thin film with a certain thickness.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products