Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

612 results about "Remote plasma" patented technology

A remote plasma (also downstream plasma or afterglow plasma) is a plasma processing method in which the plasma and material interaction occurs at a location remote from the plasma in the plasma afterglow.

Enhancement of remote plasma source clean for dielectric films

Methods for cleaning semiconductor processing chambers used to process carbon-containing films, such as amorphous carbon films, barrier films comprising silicon and carbon, and low dielectric constant films including silicon, oxygen, and carbon are provided. The methods include using a remote plasma source to generate reactive species that clean interior surfaces of a processing chamber in the absence of RF power in the chamber. The reactive species are generated from an oxygen-containing gas, such as O2, and / or a halogen-containing gas, such as NF3. An oxygen-based ashing process may also be used to remove carbon deposits from the interior surfaces of the chamber before the chamber is exposed to the reactive species from the remote plasma source.
Owner:APPLIED MATERIALS INC

Atomic layer deposition method of depositing an oxide on a substrate

The invention includes atomic layer deposition methods of depositing an oxide on a substrate. In one implementation, a substrate is positioned within a deposition chamber. A first species is chemisorbed onto the substrate to form a first species monolayer within the deposition chamber from a gaseous precursor. The chemisorbed first species is contacted with remote plasma oxygen derived at least in part from at least one of O2 and O3 and with remote plasma nitrogen effective to react with the first species to form a monolayer comprising an oxide of a component of the first species monolayer. The chemisorbing and the contacting with remote plasma oxygen and with remote plasma nitrogen are successively repeated effective to form porous oxide on the substrate. Other aspects and implementations are contemplated.
Owner:MICRON TECH INC

Remote plasma source seasoning

Methods of seasoning a remote plasma system are described. The methods include the steps of flowing a silicon-containing precursor into a remote plasma region to deposit a silicon containing film on an interior surface of the remote plasma system. The methods reduce reactions with the seasoned walls during deposition processes, resulting in improved deposition rate, improved deposition uniformity and reduced defectivity during subsequent deposition.
Owner:APPLIED MATERIALS INC

Method of depositing barrier layer for metal gates

A method of manufacturing a high performance MOS device and transistor gate stacks comprises forming a gate dielectric layer over a semiconductor substrate; forming a barrier layer over the gate dielectric layer by an ALD type process; and forming a gate electrode layer over the barrier layer. The method enables the use of hydrogen plasma, high energy hydrogen radicals and ions, other reactive radicals, reactive oxygen and oxygen containing precursors in the processing steps subsequent to the deposition of the gate dielectric layer of the device. The ALD process for forming the barrier layer is performed essentially in the absence of plasma and reactive hydrogen radials and ions. This invention makes it possible to use oxygen as a precursor in the deposition of the metal gates. The barrier film also allows the use of hydrogen plasma in the form of either direct or remote plasma in the deposition of the gate electrode. Furthermore, the barrier film prevents the electrode material from reacting with the gate dielectric material. The barrier layer is ultra thin and, at the same time, it forms a uniform cover over the entire surface of the gate dielectric.
Owner:ASM INTERNATIONAL

Remote Plasma Source for Pre-Treatment of Substrates Prior to Deposition

A plasma processing chamber particularly useful for pre-treating low-k dielectric films and refractory metal films subject to oxidation prior to deposition of other layers. A remote plasma source (RPS) excites a processing gas into a plasma and delivers it through a supply tube to a manifold in back of a showerhead faceplate. The chamber is configured for oxidizing and reducing plasmas in the same or different processes when oxygen and hydrogen are selectively supplied to the RPS. The supply tube and showerhead may be formed of dielectric oxides which may be passivated by a water vapor plasma from the remote plasma source. In one novel process, a protective hydroxide coating is formed on refractory metals by alternating neutral plasmas of hydrogen and oxygen.
Owner:APPLIED MATERIALS INC

Process chamber for dielectric gapfill

A system to form a dielectric layer on a substrate from a plasma of dielectric precursors is described. The system may include a deposition chamber, a substrate stage in the deposition chamber to hold the substrate, and a remote plasma generating system coupled to the deposition chamber, where the plasma generating system is used to generate a dielectric precursor having one or more reactive radicals. The system may also include a precursor distribution system that includes at least one top inlet and a plurality of side inlets. The top inlet may be positioned above the substrate stage and the side inlets may be radially distributed around the substrate stage. The reactive radical precursor may be supplied to the deposition chamber through the top inlet. An in-situ plasma generating system may also be included to generate the plasma in the deposition chamber from the dielectric precursors supplied to the deposition chamber.
Owner:APPLIED MATERIALS INC

Apparatuses and methods for atomic layer deposition

Embodiments of the invention provide apparatuses and methods for atomic layer deposition (ALD), such as plasma-enhanced ALD (PE-ALD). In some embodiments, a PE-ALD chamber is provided which includes a chamber lid assembly coupled with a chamber body having a substrate support therein. In one embodiment, the chamber lid assembly has an inlet manifold assembly containing an annular channel encompassing a centralized channel, wherein the centralized channel extends through the inlet manifold assembly, and the inlet manifold assembly further contains injection holes extending from the annular channel, through a sidewall of the centralized channel, and to the centralized channel. The chamber lid assembly further contains a showerhead assembly disposed below the inlet manifold assembly, a water box disposed between the inlet manifold assembly and the showerhead assembly, and a remote plasma system (RPS) disposed above and coupled with the inlet manifold assembly, and in fluid communication with the centralized channel.
Owner:APPLIED MATERIALS INC

Selective etch of silicon by way of metastable hydrogen termination

Methods of etching exposed silicon on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon while very slowly removing other exposed materials. The silicon selectivity results, in part, from a preponderance of hydrogen-containing precursor in the remote plasma which hydrogen terminates surfaces on the patterned heterogeneous structures. A much lower flow of the fluorine-containing precursor progressively substitutes fluorine for hydrogen on the hydrogen-terminated silicon thereby selectively removing silicon from exposed regions of silicon. The methods may be used to selectively remove silicon far faster than silicon oxide, silicon nitride and a variety of metal-containing materials.
Owner:APPLIED MATERIALS INC

Method and apparatus for removing polymer from a substrate

A method and an apparatus for removing polymer from a substrate are provided. In one embodiment, an apparatus utilized to remove polymer from a substrate includes a processing chamber having a chamber wall and a chamber lid defining a process volume, a substrate support assembly disposed in the processing chamber, a remote plasma source coupled to the processing chamber through an outlet port formed through the processing chamber, the outlet port having an opening pointing toward an periphery region of a substrate disposed on the substrate support assembly, and a substrate supporting surface of the substrate support assembly that substantially electrically floats the substrate disposed thereon relative to the substrate support assembly.
Owner:APPLIED MATERIALS INC

Incorporation of nitrogen into high k dielectric film

A high k dielectric film and methods for forming the same are disclosed. The high k material includes two peaks of impurity concentration, particularly nitrogen, such as at a lower interface and upper interface, making the layer particularly suitable for transistor gate dielectric applications. The methods of formation include low temperature processes, particularly CVD using a remote plasma generator and atomic layer deposition using selective incorporation of nitrogen in the cyclic process. Advantageously, nitrogen levels are tailored during the deposition process and temperatures are low enough to avoid interdiffusion and allow maintenance of the desired impurity profile.
Owner:ASM IP HLDG BV

Method of increasing deposition rate of silicon dioxide on a catalyst

Methods for forming dielectric layers, and structures and devices resulting from such methods, and systems that incorporate the devices are provided. The invention provides an aluminum oxide / silicon oxide laminate film formed by sequentially exposing a substrate to an organoaluminum catalyst to form a monolayer over the surface, remote plasmas of oxygen and nitrogen to convert the organoaluminum layer to a porous aluminum oxide layer, and a silanol precursor to form a thick layer of silicon dioxide over the porous oxide layer. The process provides an increased rate of deposition of the silicon dioxide, with each cycle producing a thick layer of silicon dioxide of about 120 Å over the layer of porous aluminum oxide.
Owner:MICRON TECH INC

Pulsed remote plasma method and system

A system and method for providing pulsed excited species from a remote plasma unit to a reaction chamber are disclosed. The system includes a pressure control device to control a pressure at the remote plasma unit as reactive species from the remote plasma unit are pulsed to the reaction chamber.
Owner:ASM IP HLDG BV

Plasma clean method for deposition chamber

Improved methods and apparatuses for removing residue from the interior surfaces of the deposition reactor are provided. The methods involve increasing availability of cleaning reagent radicals inside the deposition chamber by generating cleaning reagent radicals in a remote plasma generator and then further delivering in-situ plasma energy while the cleaning reagent mixture is introduced into the deposition chamber. Certain embodiments involve a multi-stage process including a stage in which the cleaning reagent mixture is introduced at a high pressure (e.g., about 0.6 Torr or more) and a stage the cleaning reagent mixture is introduced at a low pressure (e.g., about 0.6 Torr or less).
Owner:NOVELLUS SYSTEMS

Pulsed remote plasma method and system

A system and method for providing pulsed excited species from a remote plasma unit to a reaction chamber are disclosed. The system includes a pressure control device to control a pressure at the remote plasma unit as reactive species from the remote plasma unit are pulsed to the reaction chamber.
Owner:ASM IP HLDG BV

Method and systems for in-situ formation of intermediate reactive species

A system and method for providing intermediate reactive species from a remote plasma unit to a reaction chamber are disclosed. The system includes a pressure control device to control a pressure at the remote plasma unit as intermediate reactive species from the remote plasma unit are provided to the reaction chamber.
Owner:ASM IP HLDG BV

Flowable silicon-and-carbon-containing layers for semiconductor processing

InactiveUS20130217239A1Decreases beneficially low wet etch rateReduce hydrogen contentSemiconductor/solid-state device manufacturingCarbon layerHydrogen
Methods are described for forming and curing a gapfill silicon-and-carbon-containing layer on a semiconductor substrate. The silicon and carbon constituents may come from a silicon-and-carbon-containing precursor excited by a radical hydrogen precursor that has been activated in a remote plasma region. Exemplary precursors include 1,3,5-trisilapentane (H3Si—CH2—SiH2—CH2—SiH3) as the silicon-and-carbon-containing precursor and hydrogen (H2) as the hydrogen-containing precursor. The hydrogen-containing precursor may also be a hydrocarbon, such as acetylene (C2H2) or ethylene (C2H4). The hydrogen-containing precursor is passed through a remote plasma region to form plasma effluents (the radical hydrogen precursor) which are flowed into the substrate processing region. When the silicon-and-carbon-containing precursor combines with the plasma effluents in the substrate processing region, they form a flowable silicon-carbon-and-hydrogen-containing layer on the semiconductor substrate.
Owner:APPLIED MATERIALS INC

Method and apparatus for cleaning of a CVD reactor

InactiveUS20090269506A1Efficient and uniform remote plasma cleaningImprove efficiencyVacuum evaporation coatingElectrostatic cleaningRemote plasmaOxygen
The present invention provides a process and an apparatus for remote plasma cleaning of a process chamber of a chemical vapor deposition (CVD) reactor. The reactive species are generated in a remote plasma unit and are introduced into the process chamber through a plurality of inlet holes. The reactive species are free radicals such as oxygen radicals, fluorine radicals, and the like. These reactive species react with the unwanted residues in the process chamber and generate volatile products. The invention also provides a method for controlling the flow rate of the reactive species.
Owner:ASM JAPAN

Method for fabricating optical interference display cell

InactiveUS20050003667A1Easily reorganized and consolidatedLow costDecorative surface effectsSolid-state devicesRemote plasmaOptoelectronics
A method for fabricating an optical interference display cell is described. A first electrode and a sacrificial layer are sequentially formed on a transparent substrate and at least two openings are formed in the first electrode and the sacrificial layer to define a position of the optical interference display cell. An insulated heat-resistant inorganic supporter is formed in each of the openings. A second electrode is formed on the sacrificial layer and the supporters. Finally, a remote plasma etching process is used for removing the sacrificial layer.
Owner:SNAPTRACK

Method of cleaning CVD equipment processing chamber

A method of remote plasma cleaning a processing chamber of CVD equipment, which has high cleaning rates, low cleaning operational cost and high efficiency, is provided. The method comprises supplying cleaning gas to the remote plasma-discharge device; activating the cleaning gas inside the remote plasma-discharge device; and bringing the activated cleaning gas into the processing chamber and which is characterized in that a mixed gas of F2 gas and an inert gas are used as the cleaning gas. A concentration of the F2 gas is 10% or higher. The F2 gas, which is a cleaning gas, is supplied to the remote plasma-discharge device from an F2 gas cylinder by diluting F2 gas at a given concentration by an inert gas.
Owner:ASM JAPAN

Method and systems for in-situ formation of intermediate reactive species

A system and method for providing intermediate reactive species from a remote plasma unit to a reaction chamber are disclosed. The system includes a pressure control device to control a pressure at the remote plasma unit as intermediate reactive species from the remote plasma unit are provided to the reaction chamber.
Owner:ASM IP HLDG BV

Plasma immersion ion implantation process

A method of processing a workpiece includes placing the workpiece on a workpiece support pedestal in a main chamber with a gas distribution showerhead, introducing a process gas into a remote plasma source chamber and generating a plasma in the remote plasma source chamber, transporting plasma-generated species from the remote plasma source chamber to the gas distribution showerhead so as to distribute the plasma-generated species into the main chamber through the gas distribution showerhead, and applying plasma RF power into the main chamber.
Owner:APPLIED MATERIALS INC

Conditioning remote plasma source for enhanced performance having repeatable etch and deposition rates

Embodiments of the present disclosure generally relate to methods for conditioning an interior wall surface of a remote plasma generator. In one embodiment, a method for processing a substrate is provided. The method includes exposing an interior wall surface of a remote plasma source to a conditioning gas that is in excited state to passivate the interior wall surface of the remote plasma source, wherein the remote plasma source is coupled through a conduit to a processing chamber in which a substrate is disposed, and the conditioning gas comprises an oxygen-containing gas, a nitrogen-containing gas, or a combination thereof. The method has been observed to be able to improve dissociation / recombination rate and plasma coupling efficiency in the processing chamber, and therefore provides repeatable and stable plasma source performance from wafer to wafer.
Owner:APPLIED MATERIALS INC

Remotely-excited fluorine and water vapor etch

A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. The chemical reaction resulting from the combination produces reactants which etch the patterned heterogeneous structures to produce, in embodiments, a thin residual structure exhibiting little deformation. The methods may be used to conformally trim silicon oxide while removing little or no silicon, polysilicon, silicon nitride, titanium or titanium nitride. In an exemplary embodiment, the etch processes described herein have been found to remove mold oxide around a thin cylindrical conducting structure without causing the cylindrical structure to significantly deform.
Owner:APPLIED MATERIALS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products