Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1938 results about "Deposition rate" patented technology

Deposition rate. The amount of welding material deposited per unit of time, expressed in pounds per hour.

Methods, systems, and apparatus for atomic-layer deposition of aluminum oxides in integrated circuits

Integrated circuits, the key components in thousands of electronic and computer products, are generally built layer by layer on a silicon substrate. One common layer-formation technique, known as chemical-vapor deposition (CVD), produces uneven layers and covers vertical surfaces poorly. An emergent technique, atomic-layer deposition, overcomes these shortcomings, but has others, such as slow deposition rates and longer than desirable cycle times, particularly as applied to deposition of aluminum oxide. Accordingly, the inventors devised unique atomic-layer deposition systems, methods, and apparatus suitable for aluminum-oxide deposition. One exemplary system includes an outer chamber, a substrate holder, and a gas-distribution fixture that engages or cooperates with the substrate holder to form an inner chamber within the outer chamber. The inner chamber has a smaller volume than the outer chamber, which ultimately requires less time to fill and purge and thus promises to reduce cycle times for deposition of materials, such as aluminum oxide.
Owner:MICRON TECH INC

Remote plasma source seasoning

Methods of seasoning a remote plasma system are described. The methods include the steps of flowing a silicon-containing precursor into a remote plasma region to deposit a silicon containing film on an interior surface of the remote plasma system. The methods reduce reactions with the seasoned walls during deposition processes, resulting in improved deposition rate, improved deposition uniformity and reduced defectivity during subsequent deposition.
Owner:APPLIED MATERIALS INC

Remote plasma source seasoning

Methods of seasoning a remote plasma system are described. The methods include the steps of flowing a silicon-containing precursor into a remote plasma region to deposit a silicon containing film on an interior surface of the remote plasma system. The methods reduce reactions with the seasoned walls during deposition processes, resulting in improved deposition rate, improved deposition uniformity and reduced defectivity during subsequent deposition.
Owner:APPLIED MATERIALS INC

Silicon Dioxide Thin Films by ALD

Methods are provided for depositing silicon dioxide containing thin films on a substrate by atomic layer deposition ALD. By using disilane compounds as the silicon source, good deposition rates and uniformity are obtained.
Owner:ASM IP HLDG BV

Bottom up fill in high aspect ratio trenches

InactiveUS20120149213A1Improve gap fillingReduce nucleation delayLiquid surface applicatorsSemiconductor/solid-state device manufacturingHydrogenNitrogen
Provided are novel methods of filling gaps with a flowable dielectric material. According to various embodiments, the methods involve performing a surface treatment on the gap to enhance subsequent bottom up fill of the gap. In certain embodiments, the treatment involves exposing the surface to activated species, such as activated species of one or more of nitrogen, oxygen, and hydrogen. In certain embodiments, the treatment involves exposing the surface to a plasma generated from a mixture of nitrogen and oxygen. The treatment may enable uniform nucleation of the flowable dielectric film, reduce nucleation delay, increase deposition rate and enhance feature-to-feature fill height uniformity.
Owner:NOVELLUS SYSTEMS

Method of increasing deposition rate of silicon dioxide on a catalyst

Methods for forming dielectric layers, and structures and devices resulting from such methods, and systems that incorporate the devices are provided. The invention provides an aluminum oxide / silicon oxide laminate film formed by sequentially exposing a substrate to an organoaluminum catalyst to form a monolayer over the surface, remote plasmas of oxygen and nitrogen to convert the organoaluminum layer to a porous aluminum oxide layer, and a silanol precursor to form a thick layer of silicon dioxide over the porous oxide layer. The process provides an increased rate of deposition of the silicon dioxide, with each cycle producing a thick layer of silicon dioxide of about 120 Å over the layer of porous aluminum oxide.
Owner:MICRON TECH INC

Method for manufacturing photoelectric conversion device

To form a microcrystalline semiconductor with high quality which can be directly formed at equal to or less than 500° C. over a large substrate with high productivity without decreasing a deposition rate. In addition, to provide a photoelectric conversion device which employs the microcrystalline semiconductor as a photoelectric conversion layer. A reactive gas containing helium is supplied to a treatment chamber which is surrounded by a plurality of juxtaposed waveguides and a wall, the pressure in the treatment chamber is maintained at an atmospheric pressure or a subatmospheric pressure, microwave is supplied to a space sandwiched between the juxtaposed waveguides to generate plasma, and a photoelectric conversion layer of a microcrystalline semiconductor is deposited over a substrate which is placed in the treatment chamber.
Owner:SEMICON ENERGY LAB CO LTD

Method and apparatus for improved temperature control in atomic layer deposition

A system and method for that allows one part of an atomic layer deposition (ALD) process sequence to occur at a first temperature while allowing another part of the ALD process sequence to occur at a second temperature. In such a fashion, the first temperature can be chosen to be lower such that decomposition or desorption of the adsorbed first reactant does not occur, and the second temperature can be chosen to be higher such that comparably greater deposition rate and film purity can be achieved. Additionally, the invention relates to improved temperature control in ALD to switch between these two thermal states in rapid succession. It is emphasized that this abstract is provided to comply with rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Owner:NOVELLUS SYSTEMS

Methods and apparatus for plasma-based deposition

High-deposition rate methods for forming transparent ashable hardmasks (AHMs) that have high plasma etch selectivity to underlying layers are provided. The methods involve placing a wafer on a powered electrode such as a powered pedestal for plasma-enhanced deposition. According to various embodiments, the deposition is run at low hydrocarbon precursor partial pressures and / or low process temperatures. Also provided are ceramic wafer pedestals with multiple electrode planes embedded with the pedestal are provided. According to various embodiments, the pedestals have multiple RF mesh electrode planes that are connected together such that all the electrode planes are at the same potential.
Owner:NOVELLUS SYSTEMS

Method of manufacturing semiconductor device

A method of manufacturing a semiconductor device includes forming a first insulating film over an underlying film by plasma polymerization of cyclic siloxane, and forming a second insulating film on the first insulating film by plasma polymerization of the cyclic siloxane continuously, after forming the first insulating film. The deposition rate of the first insulating film is slower than the deposition rate of the second insulating film.
Owner:RENESAS ELECTRONICS CORP

Apparatus and method for tuning a plasma profile using a tuning electrode in a processing chamber

Embodiments of the present invention relate to apparatus for enhancing deposition rate and improving a plasma profile during plasma processing of a substrate. According to embodiments, the apparatus includes a tuning electrode disposed in a substrate support pedestal and electrically coupled to a variable capacitor. The capacitance is controlled to control the RF and resulting plasma coupling to the tuning electrode. The plasma profile and the resulting deposition rate and deposited film thickness across the substrate are correspondingly controlled by adjusting the capacitance and impedance at the tuning electrode.
Owner:APPLIED MATERIALS INC

Method of forming oxide layer using atomic layer deposition method and method of forming capacitor of semiconductor device using the same

In a method of forming an oxide layer using an atomic layer deposition and a method of forming a capacitor of a semiconductor device using the same, a precursor including an amino functional group is introduced onto a substrate to chemisorb a portion of the precursor on the substrate. Then, the non-chemisorbed precursor is removed. Thereafter, an oxidant is introduced onto the substrate to chemically react the chemisorbed precursor with the oxidant to form an oxide layer on the substrate. A deposition rate is fast and an oxide layer having a good deposition characteristic may be obtained. Also, a thin oxide film having a good step coverage and a decreased pattern loading rate can be formed.
Owner:SAMSUNG ELECTRONICS CO LTD

Conditioning remote plasma source for enhanced performance having repeatable etch and deposition rates

Embodiments of the present disclosure generally relate to methods for conditioning an interior wall surface of a remote plasma generator. In one embodiment, a method for processing a substrate is provided. The method includes exposing an interior wall surface of a remote plasma source to a conditioning gas that is in excited state to passivate the interior wall surface of the remote plasma source, wherein the remote plasma source is coupled through a conduit to a processing chamber in which a substrate is disposed, and the conditioning gas comprises an oxygen-containing gas, a nitrogen-containing gas, or a combination thereof. The method has been observed to be able to improve dissociation / recombination rate and plasma coupling efficiency in the processing chamber, and therefore provides repeatable and stable plasma source performance from wafer to wafer.
Owner:APPLIED MATERIALS INC

Method of silicon oxide and silicon glass films deposition

A method for fabricating a silicon oxide and silicon glass layers at low temperature using soft power-optimized Plasma-Activated CVD with a TEOS-ozone-oxygen reaction gas mixture (TEOS O3 / O2 PACVD) is described. It combines advantages of both low temperature Plasma-Enhanced Chemical Vapor Deposition (PECVD) and TEOS-ozone Sub-Atmospheric Chemical Vapor Deposition (SACVD) and yields a coating of silicon oxide with stable and high deposition rate, no surface sensitivity, good film properties, conformal step coverage and good gap-fill. Key features of the invention's O3 / O2 PACVD process are: a plasma is maintain throughout the entire deposition step in a parallel plate type reactor chamber, the precise RF plasma density, ozone concentration in oxygen and the deposition temperature. These features provide the reaction conditions for the proper O3 / O2 reaction mechanism that deposits a conformal silicon oxide layer. The process has significant implication for semiconductor device manufacturing involving the deposition of a dielectric over a conducting non-planar surface.
Owner:CHARTERED SEMICONDUCTOR MANUFACTURING

Systems and methods for reducing the influence of plasma-generated debris on the internal components of an EUV light source

Systems and methods are disclosed for reducing the influence of plasma generated debris on internal components of an EUV light source. In one aspect, an EUV meteorology monitor is provided which may have a heater to heat an internal multi-layer filtering mirror to a temperature sufficient to remove deposited debris from the mirror. In another aspect, a device is disclosed for removing plasma generated debris from an EUV light source collector mirror having a different debris deposition rate at different zones on the collector mirror. In a particular aspect, an EUV collector mirror system may comprise a source of hydrogen to combine with Li debris to create LiH on a collector surface; and a sputtering system to sputter LiH from the collector surface. In another aspect, an apparatus for etching debris from a surface of a EUV light source collector mirror with a controlled plasma etch rate is disclosed.
Owner:ASML NETHERLANDS BV

Operating method for a large dimension plasma enhanced atomic layer deposition cavity and an apparatus thereof

An operating method for a large dimension plasma enhanced atomic layer deposition cavity and an apparatus thereof are provided. The present invention reduces the time needed for filling the manufacturing gas into the large volume manufacturing cavity. Therefore, the plasma enhanced atomic layer deposition apparatus can switch the precursors rapidly to increase the thin film deposition rate, reduce the manufacturing gas consumption and lower the manufacturing cost.
Owner:CHINA STAR OPTOELECTRONICS INT HK

Semiconductor device and manufacturing method thereof

Wirings mainly containing copper are formed on an insulating film on a substrate. Then, after forming insulating films for reservoir pattern and a barrier insulating film, an insulating film for suppressing or preventing diffusion of copper is formed on upper and side surfaces of the wirings, the insulating film on the substrate, and the barrier insulating film. Here, thickness of the insulating film for suppressing or preventing diffusion of copper at the bottom of a narrow inter-wiring space is made smaller than that on the wirings, thereby efficiently reducing wiring capacitance of narrow-line pitches. Then, first and second low dielectric constant insulating films are formed. Here, a deposition rate of the first insulating film at an upper portion of the side surfaces of facing wirings is made higher than that at a lower portion thereof, thereby forming air gaps. Finally, the second insulating film is planarized by interlayer CMP.
Owner:KOKUSA ELECTRIC CO LTD

Treating Surface of Substrate Using Inert Gas Plasma in Atomic Layer Deposition

Depositing one or more layers of material on a substrate using atomic layer deposition (ALD) followed by surface treating the substrate with radicals of inert gas before subjecting the substrate to further deposition of layers. The radicals of the inert gas appear to change the surface state of the deposited layer to a state more amenable to absorb subsequent source precursor molecules. The radicals of the inert gas disconnect bonding of molecules on the surface of the substrate, and render the molecules on the surface to have dangling bonds. The dangling bonds facilitate absorption of subsequently injected source precursor molecules into the surface. Exposure to the radicals of the inert gas thereby increases the deposition rate and improves the properties of the deposited layer.
Owner:VEECO ALD

Enhanced deposition of layer on substrate using radicals

InactiveUS9163310B2Absorption of the second source precursor on the deposited layer is facilitatedIncrease nucleation numberPretreated surfacesChemical vapor deposition coatingCross-linkDeposition process
Embodiments relate to using radicals to at different stages of deposition processes. The radicals may be generated by applying voltage across electrodes in a reactor remote from a substrate. The radicals are injected onto the substrate at different stages of molecular layer deposition (MLD), atomic layer deposition (ALD), and chemical vapor deposition (CVD) to improve characteristics of the deposited layer, enable depositing of material otherwise not feasible and / or increase the rate of deposition. Gas used for generating the radicals may include inert gas and other gases. The radicals may disassociate precursors, activate the surface of a deposited layer or cause cross-linking between deposited molecules.
Owner:VEECO ALD

Oxide-rich liner layer for flowable CVD gapfill

The formation of a gap-filling silicon oxide layer with reduced volume fraction of voids is described. The deposition involves the formation of an oxygen-rich less-flowable liner layer before an oxygen-poor more-flowable gapfill layer. However, the liner layer is deposited within the same chamber as the gapfill layer. The liner layer and the gapfill layer may both be formed by combining a radical component with an unexcited silicon-containing precursor (i.e. not directly excited by application of plasma power). The liner layer has more oxygen content than the gapfill layer and deposits more conformally. The deposition rate of the gapfill layer may be increased by the presence of the liner layer. The gapfill layer may contain silicon, oxygen and nitrogen and be converted at elevated temperature to contain more oxygen and less nitrogen. The presence of the gapfill liner provides a source of oxygen underneath the gapfill layer to augment the gas phase oxygen introduced during the conversion.
Owner:APPLIED MATERIALS INC

Atomic layer deposition using radicals of gas mixture

Performing atomic layer deposition (ALD) using radicals of a mixture of nitrogen compounds to increase the deposition rate of a layer deposited on a substrate. A mixture of nitrogen compound gases is injected into a radical reactor. Plasma of the compound gas is generated by applying voltage across two electrodes in the radical reactor to generate radicals of the nitrogen compound gases. The radicals are injected onto the surface of a substrate previously injected with source precursor. The radicals function as a reactant precursor and deposit a layer of material on the substrate.
Owner:VEECO ALD

Deposition Over Mixed Substrates

<heading lvl="0">Abstract of Disclosure< / heading> Chemical vapor deposition methods are used to deposit silicon-containing films over mixed substrates. Such methods are useful in semiconductor manufacturing to provide a variety of advantages, including uniform deposition over heterogeneous surfaces, high deposition rates, and higher manufacturing productivity. An example is in forming the base region of a heterojunction bipolar transistor, including simultaneous deposition over both single crystal semiconductor surfaces and amorphous insulating regions.
Owner:ASM IP HLDG BV

Method of forming amorphous carbon film and method of manufacturing semiconductor device using the same

InactiveUS20080293248A1Better controllableLight absorption coefficient is lowSemiconductor/solid-state device manufacturingChemical vapor deposition coatingRefractive indexDiffuse reflection
The present invention relates to a method of forming an amorphous carbon film and a method of manufacturing a semiconductor device using the method. An amorphous carbon film is formed on a substrate by vaporizing a liquid hydrocarbon compound, which has chain structure and one double bond, and supplying the compound to a chamber, and ionizing the compound. The amorphous carbon film is used as a hard mask film.It is possible to easily control characteristics of the amorphous carbon film, such as a deposition rate, an etching selectivity, a refractive index (n), a light absorption coefficient (k) and stress, so as to satisfy user's requirements. In particular, it is possible to lower the refractive index (n) and the light absorption coefficient (k). As a result, it is possible to perform a photolithography process without an antireflection film that prevents the diffuse reflection of a lower material layer.Further, a small amount of reaction by-product is generated during a deposition process, and it is possible to easily remove reaction by-products that are attached on the inner wall of a chamber. For this reason, it is possible to increase a cycle of a process for cleaning a chamber, and to increase parts changing cycles of a chamber. As a result, it is possible to save time and cost.
Owner:TES CO LTD

Fast atomic layer deposition process using seed precursor

Embodiments relate to an atomic layer deposition (ALD) process that uses a seed precursor for increased deposition rate. A first reactant precursor (e.g., H2O) may be formed as a result of reaction. The first reactant precursor may react with or substitute source precursor (e.g., 3DMAS) in a subsequent process to deposit material on a substrate. In addition, a second reactant precursor (e.g., radicals) may be separately injected onto the substrate previously injected with the source precursor. By causing the source precursor to react with the first reactant precursor from the surface of the substrate and also react with the second reactant provided by the injector, the material is deposited on the substrate in an expedient manner.
Owner:VEECO ALD

Method for atomic layer deposition (ALD) of silicon oxide film

The present invention relates to a method for forming silicon oxide films on substrates using an atomic layer deposition process. Specifically, the silicon oxide films are formed at low temperature and high deposition rate via the atomic layer deposition process using a Si2Cl6 source unlike a conventional atomic layer deposition process using a SiCl4 source. The atomic layer deposition apparatus used in the above process can be in-situ cleaned effectively at low temperature using a HF gas or a mixture gas of HF gas and gas containing —OH group.
Owner:SAMSUNG ELECTRONICS CO LTD

Optical emission interferometry for PECVD using a gas injection hole

The present invention provides a method and apparatus for improving optical sensing of a plasma process through the use of a fiber optic sensor placed within a standard showerhead hole of a standard gas showerhead positioned in an upper electrode of a plasma system during the plasma processing of a substrate. A film property can be calculated based on the measured plasma emission from the surface of the substrate. The film property can be film deposition rate, refractive index, film thickness, etc. Based on the measured film property, the plasma processing of the substrate can be adjusted and / or terminated. In addition, a window is provided that is positioned in the upper electrode assembly for viewing the plasma emission through the standard showerhead hole.
Owner:PLASMA THERM

Multi-layered radiant thermal evaporator and method of use

The present invention provides a system and method for uniform coating of a substrate at high deposition rates by evaporating a coating material in a vacuum chamber. The system includes an evaporator having a heating crucible for containing a coating material to be evaporated and a generally planar heat source disposed so as to heat a surface of a coating material contained in the heating crucible. Preferably, the heat source is manufactured from a ceramic or intermetallic material and includes a first layer defining a first set of openings and a second layer defining a second set of openings wherein the second layer overlies the first layer and is spaced apart therefrom. The first and second sets of openings allow the evaporated coating material to pass therethrough for dispersion of the coating material in a deposition zone defined by a containment shield disposed above the heat source.
Owner:DARLY CUSTOM TECH

Chemical vapor deposition method using a catalyst on a substrate surface

A method of chemically depositing a copper film in which a bromine or iodine-containing catalyst component is employed to enhance the deposition rate. The present invention is characterized in that the catalyst component floats on the film surface during the film formation. Accordingly, a film deposition having superior step coverage and high deposition rate is obtained.
Owner:ASM KOREA LTD

Deposition monitoring system

Described is an apparatus for detecting and removing deposits from a surface exposed to wellbore fluids. The apparatus can monitor the rate of deposition and subsequently remove the deposited material. The combination of detection apparatus and removal apparatus provides an instrument with self-cleaning operation mode.
Owner:SCHLUMBERGER TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products