Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

5327 results about "Vacuum chamber" patented technology

A vacuum chamber is a rigid enclosure from which air and other gases are removed by a vacuum pump. This results in a low-pressure environment within the chamber, commonly referred to as a vacuum. A vacuum environment allows researchers to conduct physical experiments or to test mechanical devices which must operate in outer space (for example) or for processes such as vacuum drying or vacuum coating. Chambers are typically made of metals which may or may not shield applied external magnetic fields depending on wall thickness, frequency, resistivity, and permeability of the material used. Only some materials are suitable for vacuum use.

PMOS transistor with compressive dielectric capping layer

A salicide layer is deposited on the source/drain regions of a PMOS transistor. A dielectric capping layer having residual compressive stress is formed on the salicide layer by depositing a plurality of PECVD dielectric sublayers and plasma-treating each sublayer. Compressive stress from the dielectric capping layer is uniaxially transferred to the PMOS channel through the source-drain regions to create compressive strain in the PMOS channel. To form a compressive dielectric layer, a deposition reactant mixture containing A1 atoms and A2 atoms is provided in a vacuum chamber. Element A2 is more electronegative than element A1, and A1 atoms have a positive oxidation state and A2 atoms have a negative oxidation state when A1 atoms are bonded with A2 atoms. A deposition plasma is generated by applying HF and LF radio-frequency power to the deposition reactant mixture, and a sublayer of compressive dielectric material is deposited. A post-treatment plasma is generated by applying HF and LF radio-frequency power to a post-treatment gas that does not contain at least one of A1 atoms and A2 atoms. Compressive stress in the dielectric sublayer is increased by treating the sublayer in the post-treatment plasma. Processes of depositing a dielectric sublayer and post-treating the sublayer in plasma are repeated until a desired thickness is achieved. The resulting dielectric layer has residual compressive stress.

Capacitively coupled plasma reactor with magnetic plasma control

A plasma reactor includes a vacuum enclosure including a side wall and a ceiling defining a vacuum chamber, and a workpiece support within the chamber and facing the ceiling for supporting a planar workpiece, the workpiece support and the ceiling together defining a processing region between the workpiece support and the ceiling. Process gas inlets furnish a process gas into the chamber. A plasma source power electrode is connected to an RF power generator for capacitively coupling plasma source power into the chamber for maintaining a plasma within the chamber. The reactor further includes at least a first overhead solenoidal electromagnet adjacent the ceiling, the overhead solenoidal electromagnet, the ceiling, the sidewall and the workpiece support being located along a common axis of symmetry. A current source is connected to the first solenoidal electromagnet and furnishes a first electric current in the first solenoidal electromagnet whereby to generate within the chamber a magnetic field which is a function of the first electric current, the first electric current having a value such that the magnetic field increases uniformity of plasma ion density radial distribution about the axis of symmetry near a surface of the workpiece support.

Apparatus for producing metal coated polymers

A method of improving the breakdown strength of polymer multi-layer (PML) capacitors is provided and of providing a window in food packaging is provided. The method comprises patterning the aluminum coating, either by selective removal of deposited aluminum or by preventing deposition of the aluminum on selected areas of the underlying polymer film. Apparatus is also provided for patterning metal deposition on polymer films comprising masking for defining regions in which metal is deposited. The apparatus comprises: (a) a rotating drum; (b) a monomer evaporator for depositing a monomer film on the rotating drum; (c) a radiation curing element for curing the monomer film to form a cross-linked polymer film; and (d) a resistive evaporator for depositing a metal film on the cross-linked polymer film. The foregoing elements are enclosed in a vacuum chamber. The masking comprising one of the following: (e1) a web mask provided with openings for depositing the metal film therethrough, the web mask including a portion adapted for positioning between the resistive evaporator for depositing the metal film on the cross-linked polymer film and the rotating drum; or (e2) a rotating element for transferring liquid from a source to the rotating drum, the rotating element adapted to transfer the liquid to the rotating drum after the monomer evaporator for depositing the polymer film and before the resistive evaporator for depositing the metal film.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products