Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

16729 results about "Thermal expansion" patented technology

Thermal expansion is the tendency of matter to change its shape, area, and volume in response to a change in temperature. Temperature is a monotonic function of the average molecular kinetic energy of a substance. When a substance is heated, the kinetic energy of its molecules increases. Thus, the molecules begin vibrating/moving more and usually maintain a greater average separation. Materials which contract with increasing temperature are unusual; this effect is limited in size, and only occurs within limited temperature ranges (see examples below). The relative expansion (also called strain) divided by the change in temperature is called the material's coefficient of thermal expansion and generally varies with temperature.

Semiconductor device

InactiveUS20090114910A1Uniform and high stabilityIncrease productionTransistorSolid-state devicesIn planeDevice material
In the present invention, a thin film transistor is formed on a plastic film substrate (1) having anisotropy of thermal shrinkage rate or coefficient of thermal expansion in in-plane directions of the substrate. A channel is formed such thatthe direction (7) in which the thermal shrinkage rate or the coefficient of thermal expansion of the substrate is largest is nonparallel tothe direction (8) of a current flowing through the channel of the thin film transistor. Then, a thin film transistor having stable and uniform electrical characteristics, which is formed on the plastic film substrate, is provided.
Owner:CANON KK

Apparatus and method for steam reprocessing flexible endoscopes

A system for reprocessing flexible endoscopes having lumen therein. The reprocessing system deploys steam to disinfect and / or sterilize the endoscopes, and designs, components, and methods for reducing or balancing the reprocessing cycle time and the effects of thermal expansion and contraction on the endoscopes.
Owner:MEDIVATORS INC

Showerhead mounting to accommodate thermal expansion

InactiveUS20050183827A1Minimize and eliminate distortionGreat thermal expansion coefficientElectric discharge tubesSemiconductor/solid-state device manufacturingEngineeringThermal expansion
Methods and apparatus for accommodating thermal expansion of a showerhead. In a first aspect of the invention, the showerhead is movably supported by resting a rim of the showerhead on a support shelf. In a second aspect, the showerhead is suspended from the chamber wall by a plurality of hangers that are connected to the showerhead, the chamber wall, or both by pins that slide within slots so as to permit the hangers to slide radially to accommodate thermal expansion of the showerhead in the radial direction. In a third aspect, the showerhead is suspended from the wall of the vacuum chamber by a plurality of rods or flexible wires. In a fourth aspect, the showerhead is connected near its perimeter to a second material having a greater thermal expansion coefficient than the showerhead. In a fifth aspect, a heater is mounted behind the showerhead to reduce the termperature differential between the top and bottom surfaces of the showerhead or to reduce heat transfer from the workpiece to the showerhead.
Owner:APPLIED MATERIALS INC

High density integrated circuit packaging with chip stacking and via interconnections

Chip stacks with decreased conductor length and improved noise immunity are formed by laser drilling of individual chips, such as memory chips, preferably near but within the periphery thereof, and forming conductors therethrough, preferably by metallization or filling with conductive paste which may be stabilized by transient liquid phase (TLP) processes and preferably with or during metallization of conductive pads, possibly including connector patterns on both sides of at least some of the chips in the stack. At least some of the chips in the stack then have electrical and mechanical connections made therebetween, preferably with electroplated solder preforms consistent with TLP processes. The connections may be contained by a layer of resilient material surrounding the connections and which may be formed in-situ. High density circuit packages thus obtained may be mounted on a carrier by surface mount techniques or separable connectors such as a plug and socket arrangement. The carrier may be of the same material as the chip stacks to match coefficients of thermal expansion. High-density circuit packages may also be in the form of removable memory modules in generally planar or prism shaped form similar to a pen or as a thermal conduction module.
Owner:INT BUSINESS MASCH CORP

Electrostatic chuck assembly

Embodiments of the present invention provide a cost effective electrostatic chuck assembly capable of operating over a wide temperature range in an ultra-high vacuum environment while minimizing thermo-mechanical stresses within the electrostatic chuck assembly. In one embodiment, the electrostatic chuck assembly includes a dielectric body having chucking electrodes which comprise a metal matrix composite material with a coefficient of thermal expansion (CTE) that is matched to the CTE of the dielectric body.
Owner:APPLIED MATERIALS INC

Thermocouple

A thermocouple having a support tube configured to receive a pair of wires of dissimilar metals. The pair of wires of the thermocouple connected at a junction adjacent to one end of the support tube. The thermocouple further including a cap attached to the opposing end of the support tube, wherein the cap receives the free ends of the pair of wires. The cap allowing the pair of wires to translate freely therethrough to accommodate the difference in thermal expansion and contraction of the pair of wires relative to the thermal expansion and contraction of the support tube.
Owner:ASM IP HLDG BV

Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination

An object of the present invention is to provide a honeycomb filter for purifying exhaust gases which makes it possible to alleviate a thermal stress generated due to occurrence of a local temperature change and which is less likely to generate cracks and superior in strength and durability, an adhesive that has a low thermal capacity and is capable of alleviating the thermal stress, a coating material that has a low thermal capacity with a superior heat insulating property and is capable of alleviating the thermal stress, and a manufacturing method of the honeycomb filter for purifying exhaust gases that can improve precision in the outside dimension, and reduce damages in the manufacturing processes. The present invention relates to a honeycomb filter for purifying exhaust gases, having a structure in that a plurality of column-shaped porous ceramic members, each having a number of through holes that are placed side by side in the length direction with partition wall interposed therebetween, are combined with one another through adhesive layers so that the partition wall that separate the through holes are allowed to function as a filter for collecting particulates, and in this structure, the thermal expansion coefficient αL of the adhesive layer and the thermal expansion coefficient αF of the porous ceramic member are designed to have the following relationship: 0.01<|αL−αF| / αF<1.0.
Owner:IBIDEN CO LTD

Light emitting device

A light emitting device has: a light emitting element; a lead that is electrically connected to the light emitting element at its one end and serves as a terminal to supply a power source to the light emitting element; a metal base that the light emitting element is mounted thereon and radiates heat of the light emitting element; and a sealing member that is of transparent resin or glass and covers the light emitting element. The lead is secured to the metal base by a heat-resisting insulating member with a thermal expansion coefficient nearly equal to that of the metal base.
Owner:TOYODA GOSEI CO LTD

Active fly height control crown actuator

A micro-actuator is comprised of a piezoelectric motor mounted on a flexure tongue with offsetting hinges, to perform a fine positioning of the magnetic read / write head. The substantial gain in the frequency response greatly improves the performance and accuracy of the track-follow control for fine positioning. The simplicity of the enhanced micro-actuator design results in a manufacturing efficiency that enables a high-volume, low-cost production. The micro-actuator is interposed between a flexure tongue and a slider to perform an active control of the fly height of the magnetic read / write head. The induced slider crown and camber are used to compensate for thermal expansion of the magnetic read / write head, which causes the slider to be displaced at an unintended fly height position relative to the surface of the magnetic recording disk. The enhanced micro-actuator design results in reduced altitude sensitivity, ABS tolerances, and reduced stiction. The controlled fly height of the magnetic read / write head prevents a possibility of a head crash, while improving the performance and data integrity.
Owner:WESTERN DIGITAL TECH INC

High density integrated circuit packaging with chip stacking and via interconnections

Chip stacks with decreased conductor length and improved noise immunity are formed by laser drilling of individual chips, such as memory chips, preferably near but within the periphery thereof, and forming conductors therethrough, preferably by metallization or filling with conductive paste which may be stabilized by transient liquid phase (TLP) processes and preferably with or during metallization of conductive pads, possibly including connector patterns on both sides of at least some of the chips in the stack. At least some of the chips in the stack then have electrical and mechanical connections made therebetween, preferably with electroplated solder preforms consistent with TLP processes. The connections may be contained by a layer of resilient material surrounding the connections and which may be formed in-situ. High density circuit packages thus obtained may be mounted on a carrier by surface mount techniques or separable connectors such as a plug and socket arrangement. The carrier may be of the same material as the chip stacks to match coefficients of thermal expansion. High-density circuit packages may also be in the form of removable memory modules in generally planar or prism shaped form similar to a pen or as a thermal conduction module.
Owner:IBM CORP

Suspended gas distribution plate

A gas inlet manifold for a plasma chamber having a perforated gas distribution plate suspended by flexible side walls. The flexible suspension minimizes mechanical stress due to thermal expansion of the gas distribution plate. In another aspect, the suspension provides thermal isolation between the gas distribution plate and other components of the chamber.
Owner:APPLIED MATERIALS INC

Optical fiber

The present invention provides an optical fiber in which the transmission loss increase is suppressed even under a high-humidity condition or under a water-immersed condition. A colored optical fiber (22) according to an embodiment of the present invention is a colored optical fiber (22) formed by applying a colored layer to an optical fiber (14) including a glass optical fiber coated with at least a double-layered coating layer of a soft layer and a hard layer, and the ratio of thermal expansion coefficient between the coating layer after the colored layer of the colored optical fiber (22) is applied and the coating layer of the optical fiber (14) before the colored layer is applied is 0.87 or more. Furthermore, an optical fiber ribbon (32) according to another embodiment of the present invention is an optical fiber (32) formed by arranging a plurality of the colored optical fiber (22) in the form of a plane and coating them all together with a ribbon resin and the ratio of thermal expansion coefficient between the coating layer after the colored layer of the colored optical fiber (22) is applied and the coating layer of the optical fiber before the colored layer is applied is 0.90 or more.
Owner:FURUKAWA ELECTRIC CO LTD

Diode housing

A housing accommodating a semiconductor chip is set out. The housing and chip may be used for sending and / or receiving radiation. Popular applications of the housing may be in light emitting diodes. The housing includes a conductor strip that is punched into two electrically isolated portions. The housing further includes a cavity extending inwards from the top of the housing. The conductor portions include respective areas that are exposed at the bottom of the cavity. The semiconductor chip is bonded to one of the exposed areas and a wire bonds the chip to the second exposed area. The conductor portions also terminate in exposed electrodes, which allow for electrical connection of the chip with external devices. A window is formed in the cavity and the walls of the housing that form the cavity may be made of a reflective material. The electrodes remain unexposed to the window but for any residual areas about the chip and bonding wire within the first and second exposed areas. By minimizing the area of the conductor exposed to the window, delamination brought about by the different thermal expansions of the window and conductor are minimized and / or eliminated. Likewise, with a reflective housing covering the base of the cavity that accommodates the window, internal radiation reflection is increased over that which was achieved with an exposed conductor.
Owner:OSRAM GMBH

Touch Sensing Catheter

ActiveUS20080294144A1Moderate effectReduce potential temperature gradientStrain gaugeEndoscopesThermal isolationTouch Senses
A touch sensing catheter having a strain sensor assembly that may resolve the magnitude and direction of a force exerted on a distal extremity of the catheter, the strain sensor assembly being substantially insensitive to bulk temperature changes. A deformable structure having a plurality of optical fibers associated therewith that are strained by the imposition of a contact force transferred thereto. The optical fibers cooperate with the deformable structure to effect variable gap interferometers, such as Fabry-Perot resonators, that vary in operative length when a force is exerted on the deformable structure. The strain sensor assembly is rendered insensitive to bulk temperature changes by matching the coefficient of thermal expansion of the deformable body with that of the optical fibers. The strain sensor assembly may also be configured to mitigate the effects of thermal gradients using various thermal isolation techniques.
Owner:ST JUDE MEDICAL INT HLDG SARL

Semiconductor package and method of manufacturing the same which reduces warpage

A semiconductor package and method of producing the same has a semiconductor die having a first face and a second face. A coating material is coupled to the second face of the semiconductor die. A substrate having a cavity is provided wherein the semiconductor die is placed within the cavity. An encapsulant is used to encapsulate the second face of the semiconductor die placed in the cavity. Connection members are provided to couple the semiconductor die and the substrate in order to transfer signals between the semiconductor die and the substrate. Terminal members are couple to the substrate to connect the semiconductor package to an external device. In the semiconductor package, a thermal expansion coefficient of the coating material C and a thermal expansion coefficient of the encapsulant E should be approximately equal in value in order to limit the problems associated with warpage.
Owner:AMKOR TECH SINGAPORE HLDG PTE LTD

Susceptor and deposition apparatus including the same

InactiveUS20050016470A1Minimize physical impactMinimizing slip dislocationDiffusion/dopingSemiconductor/solid-state device manufacturingSusceptorEngineering
A susceptor for use in a deposition apparatus includes a recess in which a wafer is received, and a stress-reducing bumper disposed along the side of the recess. The stress-reducing bumper is of material having ductility at a relatively high temperature. Therefore, when the wafer contacts the stress-reducing bumper, such as may occur due to thermal expansion of the wafer during processing, the force of the impact on the wafer is minimized by an elastic deformation of the stress-reducing bumper. As a result, defects, such as slip dislocations at the outer peripheral edge of the wafer, are prevented.
Owner:SAMSUNG ELECTRONICS CO LTD

Strontium feldspar aluminum titanate for high temperature applications

A structure for use in high temperature applications and including a porous ceramic material consisting essentially of about 50-90 percent by weight iron or magnesium stabilized aluminum titanate (AlTiO5) and about 10-50 percent by weight strontium feldspar (SrO.Al2O3.2SiO2), and having a coefficient of thermal expansion over a temperature range from room temperature to 1000° C. of about -10x10-7 / ° C. to +15x10-7 / ° C., a heat capacity at 500° C. greater than 3.2 J / cm3K, a porosity of about 15-50 percent by volume, preferably 40-50 percent by volume, and a median pore size of about 5-50 micrometers, preferably 8-15 micrometers. The structure is especially useful as a diesel exhaust particulate filter.
Owner:CORNING INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products