Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

46443 results about "Optical fiber" patented technology

An optical fiber is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers.

Fiber optic position and shape sensing device and method relating thereto

The present invention is directed toward a fiber optic position and shape sensing device and the method of use. The device comprises an optical fiber means. The optical fiber means comprises either at least two single core optical fibers or a multicore optical fiber having at least two fiber cores. In either case, the fiber cores are spaced apart such that mode coupling between the fiber cores is minimized. An array of fiber Bragg gratings are disposed within each fiber core. A broadband reference reflector is positioned in an operable relationship to each fiber Bragg grating wherein an optical path length is established for each reflector / grating relationship. A frequency domain reflectometer is positioned in an operable relationship to the optical fiber means. In use, the device is affixed to an object. Strain on the optical fiber is measured and the strain measurements correlated to local bend measurements. Local bend measurements are integrated to determine position or shape of the object.
Owner:LUNA INNOVATIONS

Medical treatment system with energy delivery device for limiting reuse

InactiveUS7118564B2Without disabling functionalityControlling energy of instrumentEye treatmentClosed loopLaser surgery
The present invention provides an energy delivery device for use with a medical treatment system for the more efficacious treatment of patients during laser surgery which limits the number of uses or prevents reuse of the energy delivery device after a certain threshold limit has been reached. The energy delivery device comprises a diffusing optical fiber and a memory device having data programmed therein and being operatively connected to an energy generator the optical fiber includes a temperature sensor for generating a temperature signal in a closed loop manner. The data stored in the memory device includes a multiplicity of use parameters, usage limits, usage counts, and count limits all relating to the properties of the medical treatment system. The use parameters may include an elapsed time, a total treatment time, and a number of treatment sites. A main processor is also included for calculating a temperature from the temperature signal and for updating the use parameters in response to data received by the main processor. The main processor is also used to compare the use parameters to their corresponding usage limits. The main processor can create and increment a usage count when at least one of the use parameters exceeds its corresponding usage limit. Thereafter, the main processor compares the usage count to the count limit and disables the energy delivery device when the usage count exceeds a predetermined count limit.
Owner:CILAG GMBH INT

Fabric or garment with integrated flexible information infrastructure

A fabric, in the form of a woven or knitted fabric or garment, including a flexible information infrastructure integrated within the fabric for collecting, processing, transmitting and receiving information concerning-but not limited to-a wearer of the fabric. The fabric allows a new way to customize information processing devices to "fit" the wearer by selecting and plugging in (or removing) chips / sensors from the fabric thus creating a wearable, mobile information infrastructure that can operate in a stand-alone or networked mode. The fabric can be provided with sensors for monitoring physical aspects of the wearer, for example body vital signs, such as heart rate, EKG, pulse, respiration rate, temperature, voice, and allergic reaction, as well as penetration of the fabric. The fabric consists of a base fabric ("comfort component"), and an information infrastructure component which can consist of a penetration detection component, or an electrical conductive component, or both. The preferred penetration detection component is a sheathed optical fiber. The information infrastructure component can include, in addition to an electrically conductive textile yarn, a sensor or a connector for a sensor. A process is provided for making an electrical interconnection between intersecting electrically conductive yarns. Furthermore, a process is established for sheathing the plastic optical fiber and protecting it.
Owner:GEORGIA TECH RES CORP

Medical imaging, diagnosis, and therapy using a scanning single optical fiber system

An integrated endoscopic image acquisition and therapeutic delivery system for use in minimally invasive medical procedures (MIMPs). The system uses directed and scanned optical illumination provided by a scanning optical fiber or light waveguide that is driven by a piezoelectric or other electromechanical actuator included at a distal end of an integrated imaging and diagnostic / therapeutic instrument. The directed illumination provides high resolution imaging, at a wide field of view (FOV), and in full color that matches or excels the images produced by conventional flexible endoscopes. When using scanned optical illumination, the size and number of the photon detectors do not limit the resolution and number of pixels of the resulting image. Additional features include enhancement of topographical features, stereoscopic viewing, and accurate measurement of feature sizes of a region of interest in a patient's body that facilitate providing diagnosis, monitoring, and / or therapy with the instrument.
Owner:UNIV OF WASHINGTON

Method of adding a device to a network

A method of adding a device to an existing or new electrical or electronic automation or multimedia network. The invention facilitates adding a device to the network that can communicate using various protocols such as LonWorks, CEBus, X-10, etc. over media such as AC power line, IR, RF, twisted pair, optical fiber, etc. The method is a mechanism for adding a device to a system that can be used by an ordinary user of network capable electrical devices. The method comprises the steps an installer would perform including the handshaking that needs to occur between devices to accomplish the binding process. A Functional Profile for LonWorks networks is given as an example. This includes a Home Device profile that employs an automated explicit type messaging for all devices intended for use in a home environment. The invention includes adding to the device an install button and a visual indicator for status such as an LED. Alternatively, existing buttons and LEDs on the device may be used for installed and binding purposes. Other methods of binding can be employed by the use of wired or wireless handheld tools, remote controls, etc. Other interfaces and user feedback can be used such as touch screen, personal computers, cellular phones, PDAs, etc which can offer simple ‘virtual’ binding by the press of an icon versus the physical button on the device. The binding can be performed locally or remotely such as via LAN, WAN, Internet, etc.
Owner:LEVITON MFG

Control of an optical fiber scanner

InactiveUS6845190B1Remove nonlinear behaviorRobust cancellationSurgeryEndoscopesOptical scannersPhotodetector
Controls for an optical scanner, such as a single fiber scanning endoscope (SFSE) that includes a resonating optical fiber and a single photodetector to produce large field of view, high-resolution images. A nonlinear control scheme with feedback linearization is employed in one type of control to accurately produce a desired scan. Open loop and closed loops controllers are applied to the nonlinear optical scanner of the SFSE. A closed loop control (no model) uses either phase locked loop and PID controllers, or a dual-phase lock-in amplifier and two PIDs for each axis controlled. Other forms of the control that employ a model use a frequency space tracking control, an error space tracking control, feedback linearizing controls, an adaptive control, and a sliding mode control.
Owner:UNIV OF WASHINGTON

Multicore optical fibre

An optical fiber for transmitting radiation comprising two or more core regions, two or more core regions, each core region comprising a substantially transparent core material and having a core refractive index, a core length, and a core diameter, wherein said core regions are arranged within a cladding region, said cladding region comprising a length of first substantially transparent cladding material, having a first refractive index, wherein said first substantially transparent cladding material has an array of lengths of a second cladding material embedded along its length, wherein the second cladding material has a second refractive index which is less than said first refractive index, such that radiation input to said fiber propagates along at least one of said core regions. The cladding region and the core regions may be arranged such that radiation input to said optical fiber propagates along one or more said lengths of said core regions in a single mode of propagation. The optical fiber may be used as a bend sensor, a spectral filter or a directional coupler. The invention also relates to a method of manufacturing a multicore optical fiber.
Owner:NKT RES & INNOVATION

Laser ablation process and apparatus

InactiveUS20020045811A1Reduce Fresnel reflectionMaximize transmitted lightControlling energy of instrumentDiagnostics using spectroscopyFiberLaser light
A laser catheter is disclosed wherein optical fibers carrying laser light are mounted in a catheter for insertion into an artery to provide controlled delivery of a laser beam for percutaneous intravascular laser treatment of atherosclerotic disease. A transparent protective shield is provided at the distal end of the catheter for mechanically diplacing intravascular blood and protecting the fibers from the intravascular contents, as well as protecting the patient in the event of failure of the fiber optics. Multiple optical fibers allow the selection of tissue that is to be removed. A computer controlled system automatically aligns fibers with the laser and controls exposure time. Spectroscopic diagnostics determine what tissue is to be removed.
Owner:KITTRELL CARTER +2

Laser-based coordinate measuring device and laser-based method for measuring coordinates

A laser based coordinate measuring device measures a position of a remote target. The laser based coordinate measuring device includes a stationary portion, a rotatable portion, and at least a first optical fiber. The stationary portion has at least a first laser radiation source and at least a first optical detector, and the rotatable portion is rotatable with respect to the stationary portion. The first optical fiber system, which optically interconnects the first laser radiation source and the first optical detector with an emission end of the first optical fiber system, has the emission end disposed on the rotatable portion. The emission end emits laser radiation to the remote target and receives laser radiation reflected from the remote target with the emission direction of the laser radiation being controlled according to the rotation of the rotatable portion.
Owner:FARO TECH INC

Multiplexed fluorescent detection in microfluidic devices

An optical detection and orientation device is provided comprising housing having an excitation light source, an optical element for reflecting the excitation light to an aspherical lens and transmitting light emitted by a fluorophore excited by said excitation light, a focussing lens for focusing the emitted light onto the entry of an optical fiber, which serves as a confocal aperture, and means for accurately moving said housing over a small area in relation to a channel in a microfluidic device. The optical detection and orientation device finds use in identifying the center of the channel and detecting fluorophores in the channel during operations involving fluorescent signals.
Owner:MONOGRAM BIOSCIENCES

Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition

Small, rugged scanners micro-fabricated from commercial optical fibers to form waveguides or other structures. The scanning waveguide has a distal portion on which is formed a non-linear taper with a diameter that decreases toward a distal end. Optionally, a hinge portion having a reduced diameter can be formed in the distal portion, improving the scanning properties of the waveguide. A micro-lens can be integrally formed at the distal tip of the waveguide with either a droplet of an optical adhesive, or by using an energy beam to melt the material of the waveguide to form a droplet. The droplet is shaped with an externally applied force. When mechanically driven in vibratory resonance, the tip of the optical waveguides moves in linear or two-dimensional scan patterns of relatively high amplitude and frequency, and large field of view. The scanner can be used either for image acquisition or image display.
Owner:UNIV OF WASHINGTON +1

Catheter having tri-axial force sensor

A catheter for diagnosis or treatment of a vessel or organ is provided in which a flexible elongated body includes a tri-axial force sensor formed of a housing and a plurality of optical fibers associated with the housing that measure changes in the intensity of light reflected from the lateral surfaces of the housing resulting from deformation caused by forces applied to a distal extremity of the housing. A controller receives an output of the optical fibers and computes a multi-dimensional force vector corresponding to the contact force.
Owner:ST JUDE MEDICAL INT HLDG SARL

Fiber optic illumination and detection patterns, shapes, and locations for use in spectroscopic analysis

The invention provides a design process that is used in the determination of the pattern of detector and illumination optical fibers at the sampling area of a subject. Information about the system, specifically a monochromator (e.g. to determine the optimal number of fibers at an output slit) and the bundle termination at a detector optics stack (e.g. to determine the optimal number of fibers at the bundle termination), is of critical importance to this design. It is those numbers that determine the ratio and number of illumination to detection fibers, significantly limiting and constraining the solution space. Additional information about the estimated signal and noise in the skin is necessary to maximize the signal-to-noise ratio in the wavelength range of interest. Constraining the fibers to a hexagonal perimeter and prescribing a hex-packed pattern, such that alternating columns contain illumination and detection fibers, yields optimal results. In the preferred embodiment of the invention, two detectors share the totality of the detection fibers at the sampling interface. A third group of detection fibers is used for classification purposes.
Owner:GLT ACQUISITION

Fiber Optic Position and Shape Sensing Device and Method Relating Thereto

The present invention is directed toward a fiber optic position and shape sensing device and the method of use. The device comprises an optical fiber means. The optical fiber means comprises either at least two single core optical fibers or a multicore optical fiber having at least two fiber cores. In either case, the fiber cores are spaced apart such that mode coupling between the fiber cores is minimized. An array of fiber Bragg gratings are disposed within each fiber core and a frequency domain reflectometer is positioned in an operable relationship to the optical fiber means. In use, the device is affixed to an object. Strain on the optical fiber is measured and the strain measurements correlated to local bend measurements. Local bend measurements are integrated to determine position and / or shape of the object.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Multiple access method and system

A wireless communication system transmits data on multiple carriers simultaneously to provide frequency diversity. Carrier interference causes a narrow pulse in the time domain when the relative phases of the multiple carriers are zero. Selection of the frequency separation and phases of the carriers controls the timing of the pulses. Both time division of the pulses and frequency division of the carriers achieves multiple access. Carrier interferometry is a basis from which other communication protocols can be derived. Frequency hopping and frequency shifting of the carriers does not change the pulse envelope if the relative frequency separation and phases between the carriers are preserved. Direct sequence CDMA signals are generated in the time domain by a predetermined selection of carrier amplitudes. Each pulse can be sampled in different phase spaces at different times. This enables communication in phase spaces that are not detectable by conventional receivers. The time-dependent phase relationship of the carriers provides automatic scanning of a beam pattern transmitted by an antenna array. In waveguide communications, the carrier frequencies and phase space may be matched to the chromatic dispersion of an optical fiber to increase the capacity of the fiber.
Owner:DEPARTMENT 13 INC

Optical fiber-based distributed radio frequency (RF) antenna systems supporting multiple-input, multiple-output (MIMO) configurations, and related components and methods

Optical fiber-based distributed antenna systems that support multiple-input, multiple-output (MIMO) antenna configurations and communications. Embodiments disclosed herein include optical fiber-based distributed antenna system that can be flexibly configured to support or not support MIMO communications configurations. In one embodiment, first and second MIMO communication paths are shared on the same optical fiber using frequency conversion to avoid interference issues, wherein the second communication path is provide to a remote extension unit to remote antenna unit. In another embodiment, the optical fiber-based distributed antenna systems may be configured to allow to provide MIMO communication configurations with existing components. Existing capacity of system components are employed to create second communication paths for MIMO configurations, thereby reducing overall capacity, but allowing avoidance of frequency conversion components and remote extension units.
Owner:CORNING OPTICAL COMM LLC

Methods for configuring and testing fiber drop terminals

A method for testing a fiber drop terminal from a single geographic location may include placing a signal onto a first optical fiber at the single geographic location. The first optical fiber is communicatively coupled to a first output receptacle on the fiber drop terminal. The method may also include detecting the signal via a second optical fiber at the single geographic location. The second optical fiber is communicatively coupled to a second output receptacle on the fiber drop terminal, and the second output receptacle is communicatively coupled to the first output receptacle via a loop-back assembly.
Owner:COMMSCOPE TECH LLC

Signal modulation method resistant to echo reflections and frequency offsets

A method of modulating communications signals, such as optical fiber, wired electronic, or wireless signals in a manner that facilitates automatic correction for the signal distortion effects of echoes and frequency shifts, while still allowing high rates of data transmission. Data symbols intended for transmission are distributed into N×N matrices, and used to weigh or modulate a family of cyclically time shifted and cyclically frequency shifted waveforms. Although these waveforms may then be distorted during transmission, their basic cyclic time and frequency repeating structure facilitates use of improved receivers with deconvolution devices that can utilize the repeating patterns to correct for these distortions. The various waveforms may be sent in N time blocks at various time spacing and frequency spacing combinations in a manner that can allow interleaving of blocks from different transmitters. Applications to channel sounding / characterization, system optimization, and also radar are also discussed.
Owner:COHERE TECH

Guidewire with optical fiber

Apparatus and method to perform therapeutic treatment and diagnosis of a patient's vasculature through the use of an intravascular device having an optical fiber disposed therein. In an embodiment of this invention, the apparatus includes a therapeutic guidewire and at least one optical fiber disposed through the therapeutic guidewire, the optical fiber capable of providing diagnostic information before, during, and after the therapeutic treatment. In an embodiment, diagnostic information includes vessel and blood characteristics such as hemodynamic characteristics, hematological parameters related to blood and blood components, and thermal parameters of the vasculature.
Owner:ABBOTT CARDIOVASCULAR

Communication system architecture and operating methodology providing a virtual neighborhood network

InactiveUS7142503B1Overcome bandwidth limitationIncreased peak bandwidth capacityError preventionFrequency-division multiplex detailsEnd-to-end encryptionTransceiver
A communication system (10) supports the provision of a plurality of dedicated communication resources (50–64), such as copper drops, RF links and optical fibers, to dedicated home-gateway devices (44–48) or distribution points (124). The communication resources (50–64) support broadband interconnection (104) between the dedicated home-gateway devices (44–48) or distribution points (124) and an access multiplexor (30) in a network (12). Each gateway device (44–48) or distribution point (124) generally includes a local RF transceiver (84) and associated control logic (80–82) that allows local communication (86) between gateway devices (44–48) and hence statistically multiplexed access (60–64, 89) to multiple communication resources, thereby providing increased bandwidth in uplink and / or downlink directions. With the control logic (80) operable to provide a routing and prioritisation / arbitration function, each gateway (44–48) is able to selectively engage use of supplemental, non-reserved communication resources usually associated with a dedicated ono-to-one connection between the access network (12) and at least one secondary gateway. Physical layer access to information routed via a secondary gateway within a virtual neighborhood network (90–92) comprising several gateways is restricted through an end-to-end encryption algorithm between an originating gateway and, at least, the access multilpexor (30).
Owner:RPX CLEARINGHOUSE

Keyboard illumination for computing devices having backlit displays

Apparatus is disclosed for illumination of a keyboard in a computing device having a display contained in a portion of the computing device which is hingeably attached to a keyboard portion, the display having a backlight. The system comprises one or more translucent elements associated with the keyboard and one or more light-conducting fibers for conducting light from the backlight of the backlit display to the one or more translucent elements associated with the keyboard. The level of illumination is varied by means of the one or more light conducting fibers transmitting light through two portions of transparent material, the two portions of transparent material have an area of contact between them which may be varied. A color adjustment mechanism is also provided.
Owner:IBM CORP

Apparatus and method for optical stimulation of nerves and other animal tissue

A nerve-stimulation device and method using light to provide a source of precise stimulation on one or more nerve fibers. In some embodiments, this simulation is provided through a device and method wherein a laser- or LED-light-generating source is operatively coupled to an optical fiber, which in turn is coupled to a plug in the end of a holder in a sheath. Light is then passed from the light source through the optical fiber to the holder and out a selected optical tip on the sheath to provide an efficacious amount of light to simulate nerves. In some embodiments, the device is constructed from non-magnetic material such as glass, plastic or ceramics. In some embodiments, the light emanating from the optical tip can be controlled manually or automatically. Some embodiments omit the fiber and use light directly from the laser diode.
Owner:NERVESENSE LTD

Systems and methods for distributed interferometric acoustic monitoring

This disclosure relates in general to a method and system for monitoring a conduit, a wellbore or a reservoir associated with hydrocarbon production or transportation and / or carbon dioxide sequestration. More specifically, but not by way of limitation, embodiments of the present invention provide for using an optical fiber as a distributed interferometer that may be used to monitor the conduit, wellbore or reservoir. In certain aspects, the distributed interferometric monitoring provides
Owner:SCHLUMBERGER TECH CORP

Holey optical fibres

An optical fiber structure having a holey fiber arranged in a holey outer support structure made up of holey tubes encased in a thin walled outer jacket. The holey fiber may have a solid core surrounded by a holey cladding having a plurality of rings of holes. With the invention it is possible to produce robust, coated and jacketed fibers with microstructured core features of micrometer size relatively easily using existing fiber fabrication technology. This improvement is a result of the outer holey structure which reduces the thermal mass of the supporting structure and makes it possible to reliably and controllably retain small hole features during the fiber fabrication process.
Owner:UNIV OF SOUTHAMPTON

Optical fiber structure and method of manufacturing same

The present invention provides an optical fiber structure that allows for reliable and easy branching of optical fibers, as well as a method of manufacturing such optical fiber structure. The optical fiber structure proposed by the present invention is characterized by a structure wherein multiple optical fiber units, each comprising multiple optical fibers that are aligned two-dimensionally in such a way that one side is covered by a first covering body, are aligned so that the covered surfaces face the same direction, and the covered or uncovered surfaces of the multiple optical fiber units are integrally covered by a second covering body. The second covering body should preferably be made of silicone rubber having a tearing strength of 29 kgf / cm or below.
Owner:TOMOEGAWA PAPER CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products