Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

804 results about "Handshaking" patented technology

In telecommunications, a handshake is an automated process of negotiation between two communicating in between participants (example "Alice and Bob") through the exchange of information that establishes the protocols of a communication link at the start of the communication, before full communication begins. The handshaking process usually takes place in order to establish rules for communication when a computer attempts to communicate with another device. Signals are usually exchanged between two devices to establish a communication link. For example, when a computer communicates with another device such as a modem, the two devices will signal each other that they are switched on and ready to work, as well as to agree to which protocols are being used.

Method for training a communication link between ports to correct for errors

A technique for training links in a computing system is disclosed. In one aspect, the technique includes configuring a first receiver in a first port using a first training sequence or a second training sequence; transmitting the second training sequence from the first port indicating the first receiver is configured; and receiving a second training sequence transmitted by a second port at the first port, the second training sequence transmitted by the second port indicating that a second receiver in the second port is configured. In a second aspect, the technique includes locking a communication link; handshaking across the locked link to indicate readiness for data transmission; transmitting information after handshaking across the locked link. And, in a third aspect, the technique includes transmitting a first training sequence from a first port and a second port; and synchronizing the receipt of the first training sequence at the first and second ports; transmitting a second training sequence from the first and second ports upon the synchronized receipt of the first training sequence at the first and second ports; and receiving the second training sequence transmitted by the first and second ports and the second and first ports, respectively, in synchrony.
Owner:QNAP SYST INC

Method of adding a device to a network

A method of adding a device to an existing or new electrical or electronic automation or multimedia network. The invention facilitates adding a device to the network that can communicate using various protocols such as LonWorks, CEBus, X-10, etc. over media such as AC power line, IR, RF, twisted pair, optical fiber, etc. The method is a mechanism for adding a device to a system that can be used by an ordinary user of network capable electrical devices. The method comprises the steps an installer would perform including the handshaking that needs to occur between devices to accomplish the binding process. A Functional Profile for LonWorks networks is given as an example. This includes a Home Device profile that employs an automated explicit type messaging for all devices intended for use in a home environment. The invention includes adding to the device an install button and a visual indicator for status such as an LED. Alternatively, existing buttons and LEDs on the device may be used for installed and binding purposes. Other methods of binding can be employed by the use of wired or wireless handheld tools, remote controls, etc. Other interfaces and user feedback can be used such as touch screen, personal computers, cellular phones, PDAs, etc which can offer simple ‘virtual’ binding by the press of an icon versus the physical button on the device. The binding can be performed locally or remotely such as via LAN, WAN, Internet, etc.
Owner:LEVITON MFG

Content-aware application switch and methods thereof

A content-aware application switch and methods thereof intelligently switch client packets to one server among a group of servers in a server farm. The switch uses Layer 7 or application content parsed from a packet to help select the server and to schedule the transmitting of the packet to the server. This enables refined load-balancing and Quality-of-Service control tailored to the application being switched. In another aspect of the invention, a slow-start server selection method assigned an initially boosted server load metric to a server newly added to the group of servers under load balancing. This alleviates the problem of the new server being swamped initially due to a very low load metric compared to that of others. In yet another aspect of the invention, a switching method dependent on Layer 7 content avoids delayed binding in a new TCP session. Layer 7 content is not available during the initial handshaking phase of a new TCP session. The method uses the Layer 7 content from a previous session as an estimate to help select the server and uses a default priority to scheduling the transmitting of the handshaking packets. Updated Layer 7 content available after the handshaking phase is then used to reset the priority for the transmit schedule and becomes available for use in load balancing of the next TCP session.
Owner:IBM CORP

Packet switch and method thereof dependent on application content

A content-aware application switch and methods thereof intelligently switch client packets to one server among a group of servers in a server farm. The switch uses Layer 7 or application content parsed from a packet to help select the server and to schedule the transmitting of the packet to the server. This enables refined load-balancing and Quality-of-Service control tailored to the application being switched. In another aspect of the invention, a slow-start server selection method assigned an initially boosted server load metric to a server newly added to the group of servers under load balancing. This alleviates the problem of the new server being swamped initially due to a very low load metric compared to that of others. In yet another aspect of the invention, a switching method dependent on Layer 7 content avoids delayed binding in a new TCP session. Layer 7 content is not available during the initial handshaking phase of a new TCP session. The method uses the Layer 7 content from a previous session as an estimate to help select the server and uses a default priority to scheduling the transmitting of the handshaking packets. Updated Layer 7 content available after the handshaking phase is then used to reset the priority for the transmit schedule and becomes available for use in load balancing of the next TCP session.
Owner:INT BUSINESS MASCH CORP

Method of adding a device to a network

A method of adding a device to an existing or new electrical or electronic automation or multimedia network. The invention facilitates adding a device to the network that can communicate using various protocols such as LonWorks, CEBus, X-10, etc. over media such as AC power line, IR, RF, twisted pair, optical fiber, etc. The method is a mechanism for adding a device to a system that can be used by an ordinary user of network capable electrical devices. The method comprises the steps an installer would perform including the handshaking that needs to occur between devices to accomplish the binding process. A Functional Profile for LonWorks networks is given as an example. This includes a Home Device profile that employs an automated explicit type messaging for all devices intended for use in a home environment. The invention includes adding to the device an install button and a visual indicator for status such as an LED. Alternatively, existing buttons and LEDs on the device may be used for installed and binding purposes. Other methods of binding can be employed by the use of wired or wireless handheld tools, remote controls, etc. Other interfaces and user feedback can be used such as touch screen, personal computers, cellular phones, PDAs, etc which can offer simple ‘virtual’ binding by the press of an icon versus the physical button on the device. The binding can be performed locally or remotely such as via LAN, WAN, Internet, etc.
Owner:LEVITON MFG

Adaptive omni-modal radio apparatus and methods

InactiveUS6934558B1Easily and conveniently identifyIntense competitionMetering/charging/biilling arrangementsAccounting/billing servicesTransmission protocolTransceiver
A frequency and protocol agile wireless communication product, and chipset for forming the same, including a frequency agile transceiver, a digital interface circuit for interconnecting the radio transceiver with external devices, protocol agile operating circuit for operating the radio transceiver in accordance with one of the transmission protocols as determined by a protocol signal and an adaptive control circuit for accessing a selected wireless communication network and for generating the frequency control signal and the protocol control signal in response to a user defined criteria Among the possible user defined criteria would be (1) the cost of sending a data message, (2) the quality of transmission link (signal strength, interference actual or potential), (3) the potential for being bumped off of the system (is service provider at near full capacity), (4) the security of transmnission, (5) any special criteria which the user could variably program into his omni-modal wireless product based on the user's desires or (6) any one or more combinations of the above features that are preprogrammed, changed or overridden by the user. The disclosed invention allows wireless service providers to broadcast electronically as part of any “handshaking” procedure with a omni-modal wireless product information such as (1) rate information and (2) information regarding system operating characteristics such as percent of system capacity in use and / or likelihood of being dropped. The disclosed invention creates a user oriented source enrollment and billing service in the wireless data market by establishing uniform standard for “handshakes” to occur between cell service providers and omni-modal wireless products. In addition, the disclosed invention can be implemented on a standard chip or chipset including a radio transceiver specifically designed to be used in all types of omni-modal wireless products.
Owner:ANTON INNOVATIONS INC

Communication infrastructure for a data processing apparatus and a method of operation of such a communication infrastructure

A communication infrastructure for a data processing apparatus, and a method of operation of such a communication infrastructure are provided. The communication infrastructure provides first and second switching circuits interconnected via a bidirectional link. Both of the switching circuits employ a multi-channel communication protocol, such that for each transaction a communication path is established from an initiating master interface to a target slave interface, with that communication path comprising m channels. The m channels comprise one or more forward channels from the initiating master interface to the target slave interface and one or more reverse channels from the target slave interface to the initiating master interface, and handshaking signals are associated with each of the m channels. The bidirectional link comprises n connection lines, where n is less than m, the bidirectional link supporting a first communication path from the first switching circuit to the second switching circuit and a second communication path in an opposite direction from the second switching circuit to the first switching circuit. Control circuitry is used to multiplex at least one forward channel of the first communication path and at least one reverse channel of the second communication path, with the multiplexing being performed in dependence on the handshaking signals associated with the channels to be multiplexed. This allows the 2m channels formed by the first and second communication paths to be provided by the n connection lines of the bidirectional link.
Owner:ARM LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products