Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

17901 results about "Wireless network" patented technology

A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking is a method by which homes, telecommunications networks and business installations avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

Apparatus and system for prompt digital photo delivery and archival

The invention comprises a wireless camera apparatus and system for automatic capture and delivery of digital image “messages” to a remote system at a predefined destination address. Initial transmission occurs via a wireless network, and the apparatus process allows the simultaneous capture of new messages while transmissions are occurring. The destination address may correspond to an e-mail account, or may correspond to a remote server from which the image and data can be efficiently processed and/or further distributed. In the latter case, data packaged with the digital message is used to control processing of the message at the server, based on a combination of pre-defined system and user options. Secured Internet access to the server allows flexible user access to system parameters for configuration of message handling and distribution options, including the option to build named distribution lists which are downloaded to the wireless camera. For example, configuration data specified on the server may be downloaded to the wireless camera to allow users to quickly specify storage and distribution options for each message, such as archival for later retrieval, forwarding to recipients in a distribution list group, and/or immediate presentation to a monitoring station for analysis and follow-up. The apparatus and system is designed to provide quick and simple digital image capture and delivery for business and personal use.

Method, system and computer program product for producing and distributing enhanced media downstreams

A multimedia production and distribution system collects or assembles a media production (such as, a news program, television programming, or radio broadcast) from a variety of sources, including television stations and other media hosting facilities. The media production is categorized and indexed for retrieval and distribution across a wired or wireless network, such as the Internet, to any client, such as a personal computer, television, or personal digital assistant. A user can operate the client to display and interact with the media production, or select various options to customize the transmission or request a standard program. Alternatively, the user can establish a template to generate the media production automatically based on personal preferences. The media production is displayed on the client with various media enhancements to add value to the media production. Such enhancements include graphics, extended play segments, opinion research, and URLs. The enhancements also include advertisements, such as commercials, active banners, and sponsorship buttons. An advertisement reporting system monitors the sale and distribution of advertisements within the network. The advertisements are priced according to factors that measure the likelihood of an advertisement actually being presented or viewed by users most likely to purchase the advertised item or service. The advertisement reporting system also collects metrics to invoice and apportion income derived from the advertisements among the network participants, including a portal host and/or producer of the content.

Method and apparatus for providing internet content to SMS-based wireless devices

A method and apparatus for providing hypermedia content maintained remotely on a network to a wireless device without a browser are described. A Short Message Service (SMS) request for Internet-based content is received from the wireless device at a proxy server, via an SMS Center (SMSC). The SMS request is transmitted to the SMSC on a wireless network. The proxy server transcodes the SMS request from a character set of the SMSC to a character set of an application and extracts a keyword from the trancoded request. The proxy server maintains a mapping of keywords to URLs. The proxy server looks up the extracted keyword in the keyword-to-URL mapping to identify the URL of an application associated with the keyword. The proxy server constructs an HTTP POST operation containing the keyword and the URL, and submits the HTTP POST operation to the application over a wireline network such as the Internet. Upon receiving an HTTP response containing the requested content from the application in response to the POST operation, the proxy server extracts the content from the HTTP response. The proxy server then translates the content from the content-type used by the application to the content-type used by the SMSC and transcodes the content from the character set used by the application to the character set used by the SMSC. The proxy server then sends the translated and transcoded content in an SMS response to the SMSC, for subsequent delivery to wireless device as an SMS message.

System and method for locating and communicating with personnel and equipment in a facility

This invention provides a system and method for identifying, locating, authorizing by proximity and communicating with equipment and personnel in a facility that generally employs a series of limited range transceivers for location determination and a distributed wireless data network for data transfer. The system employs unique RF transceiver tags on personnel and equipment that are each uniquely identified and registered with a facility control application that oversees activities in the facility. The tags are tracked by RF communication based upon their proximity to one or more fixed-base networked access points and relays (which transfer location data by RF back to access points) within four range zones. Location data on all tags is uploaded periodically to a location server that interfaces with the facility control server. Tag data is monitored by the facility control server to track, authorize and deauthorize certain data transfers, movements and activities in accordance with rules established for each tag (or type of tag) within the facility control server's application. Wireless networking (WiFi, for example), in combination with the RF-derived location information, allows the facility control server to correlate and transmit data to staff in conjunction with location and proximity. WiFi can transmit authorizations, deauthorizations and general data based upon triggers established by proximity and location. Likewise, data can be transmitted over WiFi from readers etc. from personnel and equipment located and identified by the system.

Displaying and tagging places of interest on location-aware mobile communication devices in a local area network

InactiveUS20070281690A1Facilitate information sharingInformation formatContent conversionInformation networksDisplay device
Embodiments of a location-based social network manager process are described. The process is executed on a server computer coupled to a plurality of location-aware mobile communication devices over a wireless network. The process determines the geographic location of a mobile communication device operated by a user within an area, displays a map representation of the area around the mobile communication device on a graphical user interface of the mobile communication device, and superimposes on the map the respective locations of one or more other users of mobile communication devices coupled to the mobile communication device over the network. The process establishes communication links between the user and the plurality of acquaintances through respective location aware mobile communication devices through a network protocol. The process facilitates the sharing information about places of interest among a plurality of users. The system stores location information for a place of interest in a region in a database along with information related to the place of interest. The location of the place of interest is displayed on each user's mobile communication device as an icon superimposed on the map shown on the display. The location of the users can be established with respect to their distance relative to a place of interest. Users can define their own places of interest as well as provide a quantitative or qualitative ranking for places of interest within a region. This information can then be shared with other users in the network.

Spatial multiplexing in a cellular network

The present invention provides methods and apparatus for implementing spatial multiplexing in conjunction with the one or more multiple access protocols during the broadcast of information in a wireless network. A wireless cellular network for transmitting subscriber datastream(s) to corresponding ones among a plurality of subscriber units located within the cellular network is disclosed. The wireless cellular network includes base stations and a logic. The base stations each include spatially separate transmitters for transmitting, in response to control signals, selected substreams of each subscriber datastream on an assigned channel of a multiple access protocol. The logic communicates with each of the base stations. The logic assigns an available channel on which to transmit each subscriber datastream. The logic routes at least a substream of each datastream to at least a selected one of the base stations. The logic also generates control signals to configure the at least a selected one of the base stations to transmit the selected substreams to a corresponding one among the plurality of subscriber units on the assigned channel. A subscriber unit for use in a cellular system is also disclosed. The subscriber unit includes: spatially separate receivers, a spatial processor, and a combiner. The spatially separate receivers receive the assigned channel composite signals resulting from the spatially separate transmission of the subscriber downlink datastream(s). The spatial processor is configurable in response to a control signal transmitted by the base station to separate the composite signals into estimated substreams based on information obtained during the transmission of known data patterns from at least one of the base stations. The spatial processor signals the base stations when a change of a spatial transmission configuration is required. The combiner combines the estimated substreams into a corresponding subscriber datastream.

System and method for optimizing network capacity in a cellular wireless network

A system and method is disclosed for increasing the efficiency of a cellular communication network, reduce ongoing operating costs and increase revenue. According to one aspect, a method is disclosed for increasing the efficiency of a cellular communication network whereby network capacity in the radio access network (RAN) and baseband processing for wireless connections are dynamically adjusted to automatically provision sufficient bandwidth and baseband processing capacity in response to changes in the network. The method is further extended by implementing policy management which allows wireless carriers to develop and implement network based policies to automatically increase or decrease the amount of processing resources and network bandwidth required from any cell site, hub or mobile switching office. According to another aspect, network efficiency is enhanced by utilizing a novel cellular network infrastructure. RF signals from cell site antennas of various technology types are demodulated, digital bit information is extracted from the RF signals, processed, and groomed into Gigabit Ethernet/Resilient Packet Ring (GigE/RPR) or Ethernet over copper traffic flows using specific Quality of Service (QoS) priorities. The GigE/RPR traffic flows are routed to hub sites or mobile switching offices, at which point the packetized information is extracted and converted to RF signals that are equivalent to the signals that were received at the antenna. The RF signals are sent over coaxial cable to a network hub including a pool of Base Transceiver Stations (BTSs) (or Node Bs). The hub is coupled to one or more mobile switching offices via a second fiber optic ring.

Method for configuring and routing data within a wireless multihop network and a wireless network for implementing the same

A method for configuring a wireless network comprised of a control node and a multiplicity of individual nodes includes the steps of logically organizing the network into a plurality of bands Bi, wherein each of the bands Bi includes a plurality of the individual nodes and is located a number i of hops away from the control node, where i=0 through N, and N≧1, and then assigning a logical address to each of the individual nodes, and storing the assigned logical addresses in the respective individual nodes. The assigned logical address for each individual node includes a first address portion which indicates the band Bi in which that individual node is located, and a second address portion that identifies that node relative to all other individual nodes located in the same band. The network is preferably a packet-hopping wireless network in which data is communicated by transferring data packets from node-to-node over a common RF channel. Each of the individual nodes is preferably programmed to perform the step of comparing its own logical address to a routing logical address contained in each packet which it receives, and to either discard, re-transmit, or process the packet based upon the results of the comparison. The routing logical address contained in a received packet contains the full routing information required to route the packet from a sending node to a destination node along a communication path prescribed by the routing logical address. The control node is programmed to control the routing of packets by inserting the routing logical address into each packet which it transmit, detecting any unsuccessfully transmitted packets, detecting a faulty node in the communication path prescribed by the routing logical address in response to detecting an unsuccessfully transmitted packet, and changing the routing logical address of the unsuccessfully transmitted packet to a new routing logical address which prescribes a new communication path which does not include the detected faulty node. Also disclosed are a wireless network and a network node which are designed to implement the foregoing network configuration and/or routing methods.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products