Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

8949 results about "Signal transition" patented technology

Signal transition, when referring to the modulation of a carrier signal, is a change from one significant condition to another. Examples of signal transitions are a change from one electric current, voltage, or power level to another; a change from one optical power level to another; a phase shift; or a change from one frequency or wavelength to another.

Lighting systems and methods of auto-commissioning

A lighting system for areal illumination is disclosed which includes a remote driver and a plurality of fixtures including luminaires, control devices, and/or standalone sensors. The luminaires include a light source whose output light level can be adjusted, a light sensor co-located therewith adapted to measure light received from adjacent fixtures, and a microcontroller capable of transmitting the output of the light sensor over wires to the remote driver. The remote driver is capable of bidirectional communication with the luminaires and provides independently controllable power for the light sources of the luminaires. A method of commissioning a lighting system is also disclosed which includes installing a plurality of luminaires above the area to be illuminated, causing a light source co-located with each luminaire to emit a signal, detecting the signal at light sensors co-located with each luminaire, converting the signals obtained by the light sensors into distance measurements between luminaires, creating a map recording the relative location of luminaires, and assigning luminaires to groups based on their relative locations in the map. A movable orb region large enough to containing a plurality of luminaires can also be defined and the light levels of individual luminaires can be set according to a defined mathematical function of their location within the orb region, where the defined mathematical function sets light levels which vary from the center to the periphery of said orb region.

Unique sensing system and method for reading playing cards

A sensing system for determining the rank and suit of playing cards is disclosed. The system includes a sensing module capable of reading a line of data from a printed image, a position sensor and a hardware component that combines the signals from the sensing module and position sensor, converts the signal to binary values and compares the converted signal to stored signals. The comparisons are correlated to identify card rank and Suit. The system can be used in a playing card delivery shoe used to control the game of baccarat. The shoe may be a customary dealing shoe equipped with a sensing module, or may be a mechanized shoe. The mechanized shoe may comprise a) an area for receiving a first set of playing cards useful in the play of the casino table card game of baccarat; b) first card mover that moves playing cards from the first set to a playing card staging area wherein at least one playing card is staged in an order by which playing cards are removed from the first set of and moved to the playing card staging area; c) second playing card mover that moves playing cards from the playing card staging area to a delivery area wherein playing cards removed from the staging area to the delivery shoe are moved in the same order by which playing cards were removed from the first set of playing cards and moved to the playing card staging area; and d) playing card reading sensors that read at least one playing card value of each playing card separately after each playing card has been removed from the area for receiving the first set of playing cards and before removal from the playing card delivery area One exemplary sensing system is a CIS line scanning system with an associated card position sensor and a FPGA hardware element.

Remote-controlled camera-picture broadcast system

A remote-controlled camera-picture broadcast system is provided, which decreases the cost of hardware and network for the use of a lot of unspecified users. This system is comprised of a camera apparatus, a camera controller, a camera server connected to the camera controller through a first network, and clients connected to the camera server through a second network. Each of the clients transmits an operation demand for the camera apparatus to the camera server through the second network according to an input of a user. The camera server receives the operation demand from the client into which the input of the user is applied, and transmits an operation command corresponding to the operation demand to the camera controller through the first network. The camera controller controls the camera apparatus according to the operation command from the camera server so that the camera apparatus acquires a picture and produces a video signal of the picture. The camera controller receives the video signal of the picture produced by the camera apparatus, converts the video signal to a picture data, and transmits the picture data to the camera server through the first network. The camera server transmits the picture data through the second network to the client from which the operation demand has been transmitted, thereby displaying the picture of the picture data on a screen.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products