Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1094 results about "Intersymbol interference" patented technology

In telecommunication, intersymbol interference (ISI) is a form of distortion of a signal in which one symbol interferes with subsequent symbols. This is an unwanted phenomenon as the previous symbols have similar effect as noise, thus making the communication less reliable. The spreading of the pulse beyond its allotted time interval causes it to interfere with neighboring pulses. ISI is usually caused by multipath propagation or the inherent linear or non-linear frequency response of a communication channel causing successive symbols to "blur" together.

Uplink resource allocation to control intercell interference in a wireless communication system

Embodiments of the present invention exploit the reciprocity of radio channels in TDD, and longer-term correlation between average uplink and downlink path losses in FDD wireless communication systems to enable distributed schedulers in an enhanced uplink system to allocate uplink transmission resources while preemptively managing intercell interference levels. Each cell's base station transmits a downlink reference signal at a known transmission power level. A mobile station monitors the received signal strength of the downlink reference signals from multiple base stations. The transmitted and received signal strength levels can be used by the mobile station to estimate the amount of intercell interference that the mobile station's uplink transmissions cause, and the mobile station's uplink transmission parameters are adjusted accordingly. In further embodiments, the received reference signal power levels, or values derived therefrom, are transmitted by the mobile station to its serving base station, where a scheduling algorithm uses the information to adjust one or more transmission parameters relating to a grant of uplink transmission resources to the UE, thereby controlling the intercell interference generated by the mobile station's uplink transmissions.
Owner:SONY CORP

Wireless communications system that supports multiple modes of operation

A wireless communications adapts its mode of operation between spatial multiplexing and non-spatial multiplexing in response to transmission-specific variables. An embodiment of a wireless communications system for transmitting information between a base transceiver station and a subscriber unit includes mode determination logic. The mode determination logic is in communication with the base transceiver station and the subscriber unit. The mode determination logic determines, in response to a received signal, if a subscriber datastream should be transmitted between the base transceiver station and the subscriber unit utilizing spatial multiplexing or non-spatial multiplexing. In an embodiment, the mode determination logic has an input for receiving a measure of a transmission characteristic related to the received signal. In an embodiment, the mode determination logic includes logic for comparing the measured transmission characteristic to a transmission characteristic threshold and for selecting one of spatial multiplexing and non-spatial multiplexing in response to the comparison of the measured transmission characteristic to the transmission characteristic threshold. In an embodiment, the transmission characteristic includes at least one of delay spread, post-processing signal-to-noise ratio, cyclical redundancy check (CRC) failure, residual inter-symbol interference, mean square error, coherence time, and path loss. By adapting the mode of operation in response to transmission-specific variables, the use of spatial multiplexing can be discontinued in unfavorable conditions. Additionally, because the wireless communications system can adapt its mode of operation between spatial multiplexing and non-spatial multiplexing, the communications system is compatible with both subscriber units that support spatial multiplexing and subscriber units that do not support spatial multiplexing.
Owner:APPLE INC

Wireless communications system that supports multiple modes of operation

A wireless communications adapts its mode of operation between spatial multiplexing and non-spatial multiplexing in response to transmission-specific variables. An embodiment of a wireless communications system for transmitting information between a base transceiver station and a subscriber unit includes mode determination logic. The mode determination logic is in communication with the base transceiver station and the subscriber unit. The mode determination logic determines, in response to a received signal, if a subscriber datastream should be transmitted between the base transceiver station and the subscriber unit utilizing spatial multiplexing or non-spatial multiplexing. In an embodiment, the mode determination logic has an input for receiving a measure of a transmission characteristic related to the received signal. In an embodiment, the mode determination logic includes logic for comparing the measured transmission characteristic to a transmission characteristic threshold and for selecting one of spatial multiplexing and non-spatial multiplexing in response to the comparison of the measured transmission characteristic to the transmission characteristic threshold. In an embodiment, the transmission characteristic includes at least one of delay spread, post-processing signal-to-noise ratio, cyclical redundancy check (CRC) failure, residual inter-symbol interference, mean square error, coherence time, and path loss. By adapting the mode of operation in response to transmission-specific variables, the use of spatial multiplexing can be discontinued in unfavorable conditions. Additionally, because the wireless communications system can adapt its mode of operation between spatial multiplexing and non-spatial multiplexing, the communications system is compatible with both subscriber units that support spatial multiplexing and subscriber units that do not support spatial multiplexing.
Owner:APPLE INC

TX back channel adaptation algorithm

Disclosed is a method and system that adapts coefficients of taps of a Finite Impulse Response (FIR) filter to increase elimination of Inter-Symbol Interference (ISI) introduced into a digital communications signal due to distortion characteristics caused by a real-world communications channel. In the communications system there is a Finite Impulse Response (FIR) filter. The FIR filter has at least one pre and / or post cursor tap that removes pre and / or post cursor ISI from the signal, respectively. The pre / post cursor taps each have pre / post cursor coefficients, respectively, that adjusts the effect of the pre / post cursor portion of the FIR filter. The FIR filtered signal is transmitted over the channel which distorts the signal due to the changing and / or static distortion characteristics of the channel. The channel distorted signal is received at a receiver that may pass the channel distorted signal through a quantifier / decision system (e.g., a slicer) as the quantifier input signal to quantify the quantifier input signal to one of multiple digital values. The channel distorted signal may be further adjusted by summing the channel distorted signal with the output of a Decision Feedback Equalizer (DFE) filter to create a DFE corrected signal which then becomes the quantifier input signal. An error signal is determined by finding the difference between the scaled quantifier decision and the quantifier input signal. The pre / post cursor coefficient values that adjust the effects of the pre / post cursor taps of the FIR filter are updated as a function of the error signal and at least two quantifier decision values, and update coefficient values, may be sent over a communications back-channel to the FIR filter.
Owner:AVAGO TECH INT SALES PTE LTD

Adaptive equalizers and methods for carrying out equalization with a precoded transmitter

Adaptive equalization methods and adaptive equalizers used with precoded systems dominated by intersymbol interference (ISI) monitor the output of a DFE and compare it to a reference for updating a precoder in response to the comparison. To accomplish this, an adaptive equalizer includes a feed forward equalizer receiving a signal from a communication channel, the feed forward equalizer equalizing variations in pre-cursor intersymbol interference resulting from changes in characteristics of the channel and providing an output signal to an error correction decoder, a decision circuit, coupled to the feed forward equalizer, for generating error vectors in response to the output signal of the feed forward equalizer and a decision feedback equalizer, coupled to the decision circuit, the decision feedback equalizer monitoring the pre-cursor intersymbol interference of the channel, determining when the transmitter coefficients to the precoder warrant updating, and generating a signal indicating that an update to the transmitter coefficients to the precoder is warranted. The adaptive equalizer farther includes a comparison circuit, the comparison circuit receiving an output from the decision feedback equalizer and comparing the output from the decision feedback equalizer to a reference, the comparison circuit generating the signal indicating that an update to the transmitter coefficients to the precoder is warranted in response to the comparison.
Owner:LEVEL ONE COMM

Tx back channel adaptation algorithm

Disclosed is a method and system that adapts coefficients of taps of a Finite Impulse Response (FIR) filter to increase elimination of Inter-Symbol Interference (ISI) introduced into a digital communications signal due to distortion characteristics caused by a real-world communications channel. In the communications system there is a Finite Impulse Response (FIR) filter. The FIR filter has at least one pre and/or post cursor tap that removes pre and/or post cursor ISI from the signal, respectively. The pre/post cursor taps each have pre/post cursor coefficients, respectively, that adjusts the effect of the pre/post cursor portion of the FIR filter. The FIR filtered signal is transmitted over the channel which distorts the signal due to the changing and/or static distortion characteristics of the channel. The channel distorted signal is received at a receiver that may pass the channel distorted signal through a quantifier/decision system (e.g., a slicer) as the quantifier input signal to quantify the quantifier input signal to one of multiple digital values. The channel distorted signal may be further adjusted by summing the channel distorted signal with the output of a Decision Feedback Equalizer (DFE) filter to create a DFE corrected signal which then becomes the quantifier input signal. An error signal is determined by finding the difference between the scaled quantifier decision and the quantifier input signal. The pre/post cursor coefficient values that adjust the effects of the pre/post cursor taps of the FIR filter are updated as a function of the error signal and at least two quantifier decision values, and update coefficient values, may be sent over a communications back-channel to the FIR filter.
Owner:AVAGO TECH INT SALES PTE LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products