Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1901 results about "Mean square" patented technology

Wireless communications system that supports multiple modes of operation

A wireless communications adapts its mode of operation between spatial multiplexing and non-spatial multiplexing in response to transmission-specific variables. An embodiment of a wireless communications system for transmitting information between a base transceiver station and a subscriber unit includes mode determination logic. The mode determination logic is in communication with the base transceiver station and the subscriber unit. The mode determination logic determines, in response to a received signal, if a subscriber datastream should be transmitted between the base transceiver station and the subscriber unit utilizing spatial multiplexing or non-spatial multiplexing. In an embodiment, the mode determination logic has an input for receiving a measure of a transmission characteristic related to the received signal. In an embodiment, the mode determination logic includes logic for comparing the measured transmission characteristic to a transmission characteristic threshold and for selecting one of spatial multiplexing and non-spatial multiplexing in response to the comparison of the measured transmission characteristic to the transmission characteristic threshold. In an embodiment, the transmission characteristic includes at least one of delay spread, post-processing signal-to-noise ratio, cyclical redundancy check (CRC) failure, residual inter-symbol interference, mean square error, coherence time, and path loss. By adapting the mode of operation in response to transmission-specific variables, the use of spatial multiplexing can be discontinued in unfavorable conditions. Additionally, because the wireless communications system can adapt its mode of operation between spatial multiplexing and non-spatial multiplexing, the communications system is compatible with both subscriber units that support spatial multiplexing and subscriber units that do not support spatial multiplexing.
Owner:APPLE INC

Wireless communications system that supports multiple modes of operation

A wireless communications adapts its mode of operation between spatial multiplexing and non-spatial multiplexing in response to transmission-specific variables. An embodiment of a wireless communications system for transmitting information between a base transceiver station and a subscriber unit includes mode determination logic. The mode determination logic is in communication with the base transceiver station and the subscriber unit. The mode determination logic determines, in response to a received signal, if a subscriber datastream should be transmitted between the base transceiver station and the subscriber unit utilizing spatial multiplexing or non-spatial multiplexing. In an embodiment, the mode determination logic has an input for receiving a measure of a transmission characteristic related to the received signal. In an embodiment, the mode determination logic includes logic for comparing the measured transmission characteristic to a transmission characteristic threshold and for selecting one of spatial multiplexing and non-spatial multiplexing in response to the comparison of the measured transmission characteristic to the transmission characteristic threshold. In an embodiment, the transmission characteristic includes at least one of delay spread, post-processing signal-to-noise ratio, cyclical redundancy check (CRC) failure, residual inter-symbol interference, mean square error, coherence time, and path loss. By adapting the mode of operation in response to transmission-specific variables, the use of spatial multiplexing can be discontinued in unfavorable conditions. Additionally, because the wireless communications system can adapt its mode of operation between spatial multiplexing and non-spatial multiplexing, the communications system is compatible with both subscriber units that support spatial multiplexing and subscriber units that do not support spatial multiplexing.
Owner:APPLE INC

Sampled amplitude read channel employing an adaptive non-linear correction circuit for correcting non-linear distortions in a read signal

A sampled amplitude read channel is disclosed for magnetic disk storage systems comprising an adaptive non-linear correction circuit for correcting non-linear distortions in the read signal, such as asymmetry caused by the non-linear response of a magneto-resistive (MR) read head. The analog read signal is sampled and the discrete time sample values equalized into a desired partial response prior to sequence detection. The non-linear correction circuit is inserted into the read path prior to the sequence detector and adaptively tuned by a least-mean-square (LMS) adaptation circuit. In one embodiment, the non-linear correction circuit is a discrete-time Volterra filter comprising a linear response for implementing an equalizing filter, and a non-linear response for attenuating non-linear distortions in the read signal. The filter coefficients of both the linear and non-linear sections of the Volterra filter are adaptively adjusted by the LMS adaptation circuit. In an alternative embodiment, the non-linear correction circuit operates in the analog domain, prior to the sampling device, where the cost and complexity can be minimized. The analog correction circuit implements an inverse response to that of the non-linearity in the read signal, and the response is adaptively tuned using an LMS update value computed in discrete-time for a Volterra filter, without actually implementing a Volterra filter. Further, the LMS update value for the analog correction circuit can be implemented using a simple squaring circuit.
Owner:CIRRUS LOGIC INC

Drive control method for all-electric car

The invention discloses a drive control method for an all-electric car. The drive control method aim at solving the problems that division of working modes during a finished automobile driving running is not considered, a torque compensation function is not considered in the running process of other vehicles except flooring of an accelerator pedal, and united efficiency of a power component is not considered in goal torque setting. The drive control method for the all-electric car comprises the steps of utilizing a finished automobile controller to automatically identify a finished automobile working mode according to current finished automobile acceleration mean values and an acceleration mean square errors, and enabling the finished automobile working mode to be one of a common mode, a power mode and an economic mode; working out an expected torque Treq under the corresponding mode according to a goal working mode control strategy in the finished automobile controller after the working mode identification is finished; restraining and correcting the expected torque Treq according to a power limiting value strategy in the finished automobile controller after the expected torque Treq under the goal working mode is obtained, and if a finished automobile has no major failure at the time, outputting ultimate goal torque commands to a motor.
Owner:JILIN UNIV

Multi-band structure self-adaptive filter switching method for AEC (acoustic echo cancellation)

ActiveCN106782593AAchieving Convergence Speed ​​AdvantageOvercome speedSpeech analysisMulti bandAdaptive filter
The invention discloses a multi-band structure self-adaptive filter switching method for AEC (acoustic echo cancellation). Firstly, a far-end voice signal is acquired; a voice endpoint is detected, and a VAD (voice activity detection) flag bit and an improved envelope decision threshold are output; the voice signal is fed into a loudspeaker to serve as a desired signal and also input into a self-adaptive filter; the self-adaptive filter adopts a switchable multi-band structure and a corresponding self-adaptive algorithm, parameters of the filter are adjusted by use of the least mean square criterion according to feedback information, and the optimal solution is obtained. According to the provided switching method, voice characteristics are considered sufficiently under the condition that steady maladjustment is guaranteed, and optimized configuration of the convergence rate and the algorithm complexity is realized while advantages of the algorithm in the convergence rate are utilized. During actual application of echo cancellation, a single algorithm does not easily meet various variable demands. The variable switching algorithm provides more probability for a user and has great significance in application of self-adaptive echo cancellation.
Owner:CHONGQING UNIV OF POSTS & TELECOMM

Wavelet transform and variable-step-size LMS (least mean square) adaptive filtering based signal denoising method

The invention discloses a wavelet transform and variable-step-size LMS (least mean square) adaptive filtering based signal denoising method which comprises the following steps that: 1, signal receiving and synchronous storage: a data processor synchronously stores received signals into a data memory so as to obtain a sampling sequence X (k) which is a one-dimensional signal; 2, high-frequency signal extraction: the data processor carries out wavelet transform on the currently received one-dimensional signal X (k) and extracts high-frequency signals; and 3, LMS adaptive filtering: the data processor invokes the high-frequency signals extracted by an LMS adaptive filter to carry out LMS error calculation so as to obtain output signals subjected to filtering, and carries out adjustment on the parameters of the filter according to error signals, so that the output signals tend to interference signals. The method disclosed by the invention is simple in steps, reasonable in design, convenient to realize, and good in denoising effect; and the denoising process is performed through the combination of wavelet transform and variable-step-size LMS adaptive filtering, so that the filtering effect and the tracking speed are effectively increased.
Owner:XIAN UNIV OF SCI & TECH

Temporal-spatial joint filtering high-resolution DOA (Direction of Arrival) estimation method based on compressed sensing technology

The invention provides a temporal-spatial joint filtering high-resolution DOA (Direction of Arrival) estimation method based on a compressed sensing technology. The method comprises the following steps: (1) acoustic pressure vibration velocity joint temporal filtering, to be specific, carrying out rotating combination on the data of an acoustic vector sensor, and utilizing differences in the corresponding properties of a signal and noise to carry out denoising processing; (2) matrix spatial filtering, to be specific, carrying out spatial filtering on the temporally filtered data by a matrix spatial filter of which the maximum value of the mean square error of attenuation in a stop-band and a passband is minimum; and (3) compressed sensing DOA estimation by the array of the acoustic vector sensor, to be specific, receiving data and a manually formed spatial over-complete redundance dictionary via an input array preprocessed by temporal filtering, and seeking the sparse representation of the signal to carry out vector spatial spectrum estimation. The method has great spectral resolution capability in the high-resolution DOA estimation problem of a high-speed motion target under single snapshot conditions and is insensitive to the wideband and narrowband properties and coherent properties of the signal.
Owner:HARBIN ENG UNIV

Rolling bearing fault feature extraction method based on signal sparse representation theory

The invention discloses a rolling bearing fault feature extraction method based on the signal sparse representation theory, and the method comprises the following steps: constructing an over-complete dictionary representing local damages of a rolling bearing through employing a multi-stage inherent frequency unit impulse response function; recognizing the multi-stage inherent frequency and damping ratio of the rolling bearing and a sensor system from a vibration response signal through a related filtering method, and obtaining an optimized dictionary; solving a sparse coefficient through employing a matching tracking algorithm, and improving the solving speed and precision through reasonable segmentation; reconstructing an impact response signal of each segment, and obtaining the sparse representation of a fault feature signal; carrying out time domain index statistic characteristic analysis of time intervals of adjacent impact response components in a sparse signal, and diagnosing the type of a fault through combining a mean value and a mean square deviation value. The method has the advantages of an analytical method and an adaptive method, improves the precision of waveform features, and can iron out the defects that a conventional method based on Fourier transform is not suitable for rotating speed fluctuation.
Owner:SOUTH CHINA UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products