Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4729 results about "Ultra-wideband" patented technology

Ultra-wideband (also known as UWB, ultra-wide band and ultraband) is a radio technology that can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum. UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precision locating and tracking applications.

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and/or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Waveform adaptive ultra-wideband transmitter

A waveform adaptive transmitter that conditions and/or modulates the phase, frequency, bandwidth, amplitude and/or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and/or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and/or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and/or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, a low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The UWB signal may be modulated to carry multi-megabit per second digital data, or may be used in object detection or for ranging applications. Activation of the power amplifier may be time-gated in cadence with the UWB source thereby to reduce inter-pulse power consumption. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Ultra wideband data transmission system and method

A data-modulated ultra wideband transmitter that modulates the phase, frequency, bandwidth, amplitude and / or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and / or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and / or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and / or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, a low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The UWB signal may be modulated to carry multi-megabit per second digital data, or may be used in object detection or for ranging applications. Activation of the power amplifier may be time-gated in cadence with the UWB source thereby to reduce inter-pulse power consumption. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Home picture/video display system with ultra wide-band technology

A new display system and method is described, utilizing a cellular telephone having digital camera capability and a television linked directly over a UWB wireless signal forming a UWB wireless video pico-net. The system utilizes a digital camera unit to capture picture or video images for UWB transmission directly to the television acting as a pico-net host controller, either independently or together with the cellular telephone operating as a pico-net child. The display system comprises and one or more remote devices and a host display communicating on a UWB wireless network. The host display comprises a display for presentation of the picture or video images and a UWB transceiver for processing image data from the picture or video images, for selectively sending and receiving the image data based on a request from the child. The one or more remote devices comprise a digital camera for capturing the picture or video images and another UWB transceiver as used in the host display. The host display has a generally larger display for improved presentation of the captured picture or video images useful and amusing for group, party, wedding, and conference viewing, or simply for enhanced personal enjoyment. For picture or video image sharing, the system further facilitates downloading the current picture or video images from the host display television to a requesting cellular telephone or digital camera equipped with the UWB transceiver. The UWB display system provides sufficient bandwidth to support numerous such download requests simultaneously, while utilizing a transmission technology having minimal power consumption.
Owner:TEXAS INSTR INC

Methods and apparatus for utilizing radio frequency spectrum simultaneously and concurrently in the presence of co-channel and/or adjacent channel television signals by adjusting transmitter power or receiver sensitivity

To address the scarcity of radio frequency (RF) spectrum, the disclosed systems offer unique ways to mitigate interference between television broadcasters (including their direct audience and viewers served via cable television) and other concurrent users of the RF spectrum, e.g. for one-way or two-way wireless communication. A preferred embodiment makes use of the “framing” characteristics of the “letterbox” video display format. RF emissions of the simultaneous RF spectrum user are keyed “on” only or substantially only during the time intervals when the blanking intervals and/or letterbox-border video lines are being scanned on the display, i.e. when the potentially affected (interfered with) television display is in the letterbox-frame-scanning portions of each video field. The concurrent uses may support services for voice (including telephony, music etc.), data (including Internet, intranet, etc.); image or control; fixed, portable, mobile or nomadic; narrowband, broadband or ultra-wideband; radiodetermination, diathermy, etc. Additionally, the concurrent user's emitted power and receiver sensitivity is continuously adjusted according to the broadcast television signal.
Owner:CELLCO PARTNERSHIP INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products