Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

169 results about "Pulse shaper" patented technology

Waveform adaptive ultra-wideband transmitter

A waveform adaptive transmitter that conditions and / or modulates the phase, frequency, bandwidth, amplitude and / or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and / or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and / or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and / or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, a low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The UWB signal may be modulated to carry multi-megabit per second digital data, or may be used in object detection or for ranging applications. Activation of the power amplifier may be time-gated in cadence with the UWB source thereby to reduce inter-pulse power consumption. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Ultra wideband data transmission system and method

A data-modulated ultra wideband transmitter that modulates the phase, frequency, bandwidth, amplitude and / or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and / or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and / or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and / or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, a low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The UWB signal may be modulated to carry multi-megabit per second digital data, or may be used in object detection or for ranging applications. Activation of the power amplifier may be time-gated in cadence with the UWB source thereby to reduce inter-pulse power consumption. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

System and method for optoacoustic imaging

A system and method are described for optoacoustic imaging a structural or compositional characteristic of an biological object using a coherent, broad range frequency tunable, electromagnetic radiation source and a pulse shaper to generate a sequence of electromagnetic radiation excitation signals.
Owner:GENERAL ELECTRIC CO

Control system and apparatus for use with ultra-fast laser

A control system and apparatus for use with an ultra-fast laser is provided. In another aspect of the present invention, the apparatus includes a laser, pulse shaper, detection device and control system. A multiphoton intrapulse interference method is used to characterize the spectral phase of laser pulses and to compensate for any distortions in an additional aspect of the present invention. In another aspect of the present invention, a system employs multiphoton intrapulse interference phase scan. Furthermore, another aspect of the present invention locates a pulse shaper and / or MIIPS unit between a spectral dispersion point in a laser oscillator and an output of a laser amplifier.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Control system and apparatus for use with ultra-fast laser

A control system and apparatus for use with an ultra-fast laser is provided. In another aspect of the present invention, the apparatus includes a laser, pulse shaper, detection device and control system. A multiphoton intrapulse interference method is used to characterize the spectral phase of laser pulses and to compensate for any distortions in an additional aspect of the present invention. In another aspect of the present invention, a system employs multiphoton intrapulse interference phase scan. Furthermore, another aspect of the present invention locates a pulse shaper and / or MIIPS unit between a spectral dispersion point in a laser oscillator and an output of a laser amplifier.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Control system and apparatus for use with ultra-fast laser

A control system and apparatus for use with an ultra-fast laser is provided. In another aspect of the present invention, the apparatus includes a laser, pulse shaper, detection device and control system. A multiphoton intrapulse interference method is used to characterize the spectral phase of laser pulses and to compensate any distortions in an additional aspect of the present invention. In another aspect of the present invention, a system employs multiphoton intrapulse interference phase scan. Furthermore, another aspect of the present invention locates a pulse shaper and / or MIIPS unit between a laser oscillator and an output of a laser amplifier.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Laser and environmental monitoring system

A laser and monitoring system is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan (hereinafter “MIIPS”) method is used to characterize the spectral phase of femtosecond laser pulses and to correct them. A further aspect of the system of the present invention is employed to monitor environmental chemicals and biological agents, including toxins, explosives, and diseases.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Ultra-Fast Laser System

ActiveUS20080170218A1Accurate and redundant identificationCost effectiveRadiation pyrometryLaser using scattering effectsPulse shaperUltra fast
A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

High performance CMOS radio frequency receiver

A high performance radio frequency receiver includes a low noise amplifier with large binary and stepped gain control range, controlled impedance, and enhanced blocker immunity, for amplifying and converting a radio frequency signal to a current; a pulse generator for generating in-phase and quadrature pulses; a crossover correction circuit and pulse shaper for controlling a crossover threshold of the pulses and interaction between in-phase and quadrature mixers; and a double balanced mixer for combining the RF signal with the pulses to generate an intermediate frequency or baseband zero intermediate frequency current-mode signal. The in-phase and quadrature pulses have a duty cycle of 20-35%. The intermediate frequency signal and second order harmonics may be filtered with a high frequency low pass filter and a current injected complex direct-coupled filter. Decreased die size, current drain, cost, and complexity, as well as improvements in gain, 1 / f noise, noise figure, sensitivity, and linearity may result.
Owner:NORTH STAR INNOVATIONS

Laser system using ultrashort laser pulses

A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and a spectrometer. Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan system and method characterize the spectral phase of femtosecond laser pulses. Fiber optic communication systems, photodynamic therapy and pulse characterization tests use the laser system with additional aspects of the present invention.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Single chip two-polarization quadrature synthesizer, analyser and optical communications system using the same

An optical beam synthesizer formed on a single chip is provided. It allows M-PSK modulation for both beam polarizations. The synthesizer comprises an optical pulse shaper and two M-PSK modulators for each polarization. A single-chip-integrated analyzer is provided to receive a modulated data. Analyzer comprises a pulse shaper operating as an optical sampler and a pair of 90-degrees optical hybrids for each polarization. Each optical hybrids mix incoming portions of the modulated beams with portions of the local oscillator beams. Both the synthesizer and the analyzer include a set of mirrors located on the back and front surfaces of the chips to create compact designs. The output beams from the analyzer are detected by a set of balanced photodiodes, and the data is recovered. It is another object of the invention to provide a communication system for data transmission having the synthesizer and the analyzer.
Owner:CELIGHT

Non-lethal electromagnetic active body

InactiveUS6679179B1Reduced cross-sectional surfaceLighter-weight deployableAmmunition projectilesWave based measurement systemsAudio power amplifierPower flow
A non-lethal active body which is equipped with a detonation-operated electrical pulse generator, and which is especially deployable as an article of submunition. The pulse generator is a piezo-generator having a detonation-operated inductive current amplifier and a capacitive pulse shaper connected to the output thereof.
Owner:DIEHL BGT DEFENCE GMBH & CO KG

Split channel receiver with very low second order intermodulation

A high performance radio frequency receiver includes an isolated transconductance amplifier with large binary and stepped gain control range, controlled impedance, and enhanced blocker immunity, for amplifying and converting a radio frequency signal to multiple electrically isolated currents; a pulse generator for generating in-phase and quadrature pulses; a crossover correction circuit and pulse shaper for controlling a crossover threshold of the pulses and interaction between in-phase and quadrature mixers; and a double balanced mixer for combining the RF signal with the pulses to generate an intermediate frequency or baseband zero intermediate frequency current-mode signal. The intermediate frequency signal and second order harmonics may be filtered with a high frequency low pass filter and a current injected complex direct-coupled filter. IIP2 calibration of the in-phase and quadrature channels may be optimized using the isolated transconductance amplifier.
Owner:NORTH STAR INNOVATIONS

System And Method For Measuring Content Of A Bin

A system for measuring the height of bin content includes a transmitter for transmitting an acoustic pulse towards the upper surface of the content, a non-collinear receiver array for receiving an echo of the pulse and producing signals in response to the echo, and a processing apparatus for computing one or more directions of arrival of the signals from the upper surface to the array along with corresponding measured distances. Preferably, the receivers are transducers that also serve as transmitters. Two or more such measured distances constitute a map of the upper surface for estimating the quantity of the bin content. Preferably, the system includes a pulse shaper and repeater for optimizing the pulse shape relative to the signals.
Owner:ROSEMOUNT TANK RADAR

Dynamic amplitude and spectral shaper in fiber laser amplification system

A method for overcoming the drawback in a fiber CPA laser system that includes a process of generating a large negative TOD by implementing an AODS in a pulse shaper as a dispersive component. The AODS is implemented to arbitrarily modulate both the spectrum shape and phase to control with controllable amplitude to generate different orders of dispersions including a large negative TOD for compensating the positive TOD generated by the pulse stretching and amplification processes. The AODS, implemented as a dispersive component, can be an active and controllable dispersive component to generate adjustable levels of dispersions for flexibly compensating any order of dispersions generated in the amplifier chain including the nonlinear phase shift. The AODS implemented as a dispersive component can be an active and programmable dispersive component to interactively generate adjustable levels of dispersions in response to output laser amplitude and pulse shape measurements for flexibly compensating any order of dispersions generated in the amplifier chain including the nonlinear phase shift to achieve the shortest pulse duration.
Owner:POLARONYX

Laser Based Identification of Molecular Characteristics

Enantiomers are characterized, identified, synthesized and / or modified with a shaped laser pulse. In another aspect of the present invention, binary shaping and circular polarization are employed with a laser pulse. A further aspect of the present invention provides a quarter-wave plate in combination with one or more pulse shapers.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Method for improving machining efficiency of micro-channel preparation through femtosecond laser

The invention relates to a method for improving the machining efficiency of micro-channel preparation through femtosecond laser, which belongs to the technical field of femtosecond laser application. The method includes the steps: firstly, generating the femtosecond pulse laser by the aid of a femtosecond laser system, adjusting energy by means of combination of a half wave plate and a polarizing film and modulating the femtosecond laser into femtosecond interval pulse sequence by the aid of a pulse shaper; secondly, reflecting the pulse sequence laser obtained in the first step to an objective lens for focusing through a reflector, realizing imaging by the aid of a CCD (charge coupled device) and a lighting source, moving a six-dimensional precision electric control platform and positioning a laser focus on the lower surface of a sample horizontally placed on the six-dimensional precision electric control platform; and thirdly, controlling the six-dimensional precision electric control platform to move along a laser propagation direction by the aid of a computer to machine a micro-channel on the sample. As the femtosecond laser is modulated into the femtosecond interval pulse sequence by the aid of the pulse shaper, the micro-channel preparation efficiency is improved. Moreover, introduction of a vibration source is omitted, so that controllability of precision machining cannot be reduced.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Phase and amplitude light pulse shaping using a one-dimensional phase mask

Simultaneous amplitude and phase control of ultrafast laser pulses using a single, linear (one-dimensional) liquid crystal spatial light modulator is described. Amplitude shaping is accomplished by writing a high-frequency phase grating having a spatial period much smaller than the spectral focus (over-sampling), onto the modulator, and diffracting away selected frequencies in a controllable manner, while spectral phase control is imparted by adding an appropriate slow phase bias to the modulator. The close pixel spacing, large number of pixels, and small footprint of the reflective spatial light modulator employed with an angular wavelength dispersive element in a folded Martinez stretcher, enables a simple and compact apparatus to be achieved. The high reflectivity of the spatial light modulator results in a highly efficient pulse shaper when either a prism or diffractive grating is used for the angular dispersive element. The use of a transmissive spatial light modulator in an unfolded Martinez stretcher configuration is also described.
Owner:COLORADO STATE UNIVERSITY

Laser system using ultra-short laser pulses

InactiveCN1943083AImprove encoding-decoding capabilitiesLaser detailsUsing optical meansPulse shaperUltrashort laser
A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

Method and Transmitter, Receiver and Transceiver Systems for Ultra Widebrand Communication

A system such as a code division multiple access (CDMA) system or an ultrawide band (UWB) system comprises a transmitter and a receiver. The transmitter includes a sequence extender for extending the incoming signal and a spreader for spreading the extended signal, the spreader input being coupled to the sequence extender output. A pulse shaper is coupled to the spreader output to provide a transmitter output signal. The transmitter output signal which has an associated chip rate is received by the receiver and is passed to a filter to select a number of input signals from the received signals. The signal is the passed to a sequence extension remover for removing a number of chips from the signal. The received signal is despread to a symbol rate which is less than the chip rate at which the received signal was spread prior to being received by the receiver. A frequency domain equalizer is provided to form a frequency equalized signal from the modified signal.
Owner:AGENCY FOR SCI TECH & RES

Optical diagnostic system on basis of laser spontaneous Raman scattered ray imaging

The invention relates to an optical diagnostic system on the basis of laser spontaneous Raman scattered ray imaging, belonging to the technical field of laser spectrum testing. According to the invention, a laser pulse shaper is arranged between a laser and a gas sample tank; a cutoff device is arranged at one end of a laser emergence quartz window of the gas sample tank; a total reflective mirror is arranged between an outlet of a scattered ray output quartz window of the gas sample tank and a line light source collector at an angle of 45 degrees; an optical filter is arranged between the line light source collector and an inlet of a spectrometer; an outlet of the spectrometer is respectively connected with an ICCD (Intensified Charge Coupled Device) and an inlet of a measurement and control machine; the ICCD is also respectively connected with the laser and the measurement and control machine; and due to the adoption of the optical diagnostic system, the phenomena of gas fracturing,damage to optical elements and the quartz windows, ignition of inflammable gases and the like can be effectively avoided, the weak Raman scattering signal to noise ratio can be effectively improved, and a multichannel gas Raman spectrum experiment proves that the optical diagnostic system can be applied to synchronous quantitative measurement in a plurality of regions of the gas mixture concentration in an optical engine.
Owner:JILIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products