Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

11246 results about "Intermediate frequency" patented technology

In communications and electronic engineering, an intermediate frequency (IF) is a frequency to which a carrier wave is shifted as an intermediate step in transmission or reception. The intermediate frequency is created by mixing the carrier signal with a local oscillator signal in a process called heterodyning, resulting in a signal at the difference or beat frequency. Intermediate frequencies are used in superheterodyne radio receivers, in which an incoming signal is shifted to an IF for amplification before final detection is done.

DC compensation system for a wireless communication device configured in a zero intermediate frequency architecture

A wireless communication device including a radio frequency (RF) circuit, a ZIF transceiver and a baseband processor. The ZIF transceiver includes an RF mixer circuit that converts the RF signal to a baseband input signal, a summing junction that subtracts a DC offset from the baseband input signal to provide an adjusted baseband input signal, and a baseband amplifier that receives the adjusted baseband input signal and that asserts an amplified input signal based on a gain adjust signal. The baseband processor includes gain control logic, DC control logic and a gain interface. The gain control logic receives the amplified input signal, estimates input signal power and asserts the gain adjust signal in an attempt to keep the input signal power at a target power level. The DC control logic estimates an amount of DC in the amplified input signal and provides the DC offset in an attempt to reduce DC in the amplified input signal. The gain interface converts gain levels between the gain control logic and the DC control logic. The RF signal may include in-phase (I) and quadrature (Q) portions, where the RF mixer circuit splits I and Q baseband input signals from the RF signal. Operation is substantially identical for both I and Q channels. The DC control logic operates to remove or otherwise eliminate DC from the received signal that is provided to decoders in the baseband processor.
Owner:M RED INC

High efficiency linearization power amplifier for wireless communication

An embodiment of the invention uses a predistortion correction signal to combination the modulated RF signal by an analog multiplier for linearization of power amplifiers having nonlinear characteristics such as those used in wireless RF transmitters. A predistortion controller comprises a plurality of down converters for retrieving both the ideal non-distorted information and the feedback distorted information, together with pre-stored digitally-indexed predistortion information stored, for example, in a look-up table. The digitally-indexed information models nonlinear characteristics of the high power amplifier, and is stored prior to processing of pre-compensation in the power amplifier. When the predistortion information is combined with the modulated RF signal in the analog multiplier, the result is a substantially linear information transmission from the power amplifier. In an embodiment of the system, the modulated RF input signal and the feedback signal from PA output are down-converted, respectively, by analog devices, such as mixers, after which the analog intermediate frequency (IF) signals are digitized by analog-to-digital converters for digital predistortion correction processing, followed by predistortion processing performed by, for example, a DSP or FPGA chip to generate a digital correction control signal, which is then converted to an analog signal by a digital-to-analog converter, followed by combining the analog correction signal with the RF modulated input signal to yield the input to the power amplifier.
Owner:DALI WIRELESS

Calibrated DC compensation system for a wireless communication device configured in a zero intermediate frequency architecture

A calibrated DC compensation system for a wireless communication device configured in a zero intermediate frequency (ZIF) architecture. The device includes a ZIF transceiver and a baseband processor, which further includes a calibrator that periodically performs a calibration procedure. The baseband processor includes gain control logic, DC control logic, a gain converter and the calibrator. The gain converter converts gain between the gain control logic and the DC control logic. The calibrator programs the gain converter with values determined during the calibration procedure. The gain converter may be a lookup table that stores gain conversion values based on measured gain of a baseband gain amplifier of the ZIF transceiver. The gain control logic may further include a gain adjust limiter that limits change of a gain adjust signal during operation based on a maximum limit or on one or more gain change limits. A second lookup table stores a plurality of DC adjust values, which are added during operation to further reduce DC offset. The calibration procedure includes sampling an output signal for each gain step of the baseband amplifier at two predetermined range values and corresponding DC offsets using successive approximation. The data is used to calculate gain, DC offset and DC differential values, which are used to determine the conversion values programmed into the lookup tables or the gain adjust limiter.
Owner:M RED INC

Satellite digital audio radio service tuner architecture for reception of satellite and terrestrial signals

A satellite digital audio radio receiver system and method. The inventive receiver includes a circuit for down-converting a first ensemble in a received combined signal in a first mode of operation and for down-converting a second ensemble from the received combined signal in a second mode of operation. The first ensemble includes a first signal received from a first transmitter, a second signal received from a second transmitter, and a third signal received from a third transmitter. The second ensemble includes a second signal from the first transmitter, a second signal from the second transmitter, and a second signal from the third transmitter. A controller is included to selectively switch the circuit from the first mode to the second mode. The first ensemble comprises first, second and third frequency slots and the second ensemble comprises fourth, fifth, and sixth frequency slots. In the illustrative embodiment, the first and second transmitters are mounted on first and second satellites and the third transmitter is a terrestrial repeater. Both ensembles are transmitted in accordance with the XM frequency plan. The first ensemble is down-converted using low side injection and the second ensemble down-converted using high side injection. The inventive circuit includes a synthesized frequency source. The circuit further includes a first intermediate frequency down-conversion stage with a first mixer for mixing the received combined signals with the output of synthesized frequency source. The circuit further includes first and second surface acoustic wave filters for separating the first and second signals received from the third signals. The inventive circuit further includes a second intermediate frequency down-conversion stage having second and third mixers for mixing the outputs of the first and second filters, respectively, with the output of a local oscillator.
Owner:SIRIUS XM RADIO INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products