Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5742results about "Broadcast transmission systems" patented technology

Network manager for cable television system headends

A novel network manager for use with a cable television system headend capable of monitoring and managing headend components and set top terminals in a television delivery system is described. The invention relates to methods and apparatus that manage and coordinate the reception of various programming and control signals at a headend. The invention manages and coordinates the storage of such signals for intelligent selection and distribution to set top terminals. The invention makes use of a receiver or set of receivers, a work station, a program control information processing component, a network management CPU, databases, control software and an instruction memory. The invention uses these components to manage and monitor certain headend components, such as signal reception equipment, an authorization component, a file server, MPEG decoders, a digital buffer with frame repeat and channel modulators. The invention is particularly useful in processing and responding to upstream information and subscriber communications received from set top terminals. In so doing, the invention accommodates various system services, including (1) near video on demand (NVOD), (2) virtual video on demand (VVOD), (3) video on demand (VOD), (4) interactive program services, (5) program suggestion features, (6) advertisement targeting, (7) generation of standard and custom menus, and (8) data spooling and text overlaying.
Owner:COMCAST IP HLDG I

Wireless transmission using an adaptive transmit antenna array

Closed loop wireless communication of signals using an adaptive transmit antenna array (3), in which a plurality of copies of signals to be transmitted by the transmit antenna array (3) are produced with delays and weights (wnj) that are functions of the multi-path transmission channel characteristics (H) from the transmit antenna array (3) to a receive antenna array (4) of a receiver (2) and are combined before transmission by the transmit antenna array. The delays and weights (wnj) of the transmit copies for each transmit antenna element are functions of the respective multi-path transmission channel characteristics (hn,m=1l=1,,hn,m=Ml=L)
from that transmit antenna element to the receive antenna array (4) ssuch that the multi-path signal components propagated to each receiver element are received with distinguishable delays according to the propagation path. The receiver (2) combines the received signal components from each receive antenna element with delays and weights (u) that are respective functions of the multi-path transmission channels.
Preferably, the receiver comprises a multi-finger RAKE receiver (6) that copies the received signals from the receive antenna array with delays and weights (u) that are respective functions of the multi-path transmission channels and combines the copied received signals.
Owner:GOOGLE TECH HLDG LLC

Dynamic bandwidth allocation

InactiveUS7069577B2Prevents untoward spectral effectMore balancedError preventionModulated-carrier systemsFiberModem device
The communication system includes a hybride fiber / coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber / coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber / coax distribution network. The head end includes head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information. The system further includes service units, each service unit operatively connected to the hybrid fiber / coax distribution network for upstream transmission of telephony and control data in the second frequency bandwidth and for receipt of the downstream control data and telephony in the first frequency bandwidth. Each service unit includes a service unit multicarrier modem for modulating at least the upstream telephony information on at least one carrier orthogonal at the head end terminal to another carrier in the second frequency bandwidth and for demodulating at least downstream telephony information modulated on at least a band of a plurality of orthogonal carriers in the first frequency bandwidth. Each service unit also includes a controller operatively connected to the service unit multicarrier modem for controlling the modulation of and demodulation performed by the service unit multicarrier modem. A method of monitoring communication channels, a distributed loop method for adjusting transmission characteristics to allow for transmission of data in a multi-point to point communication system, a polyphase filter technique for providing ingress protection and a scanning method for identifying frequency bands to be used for transmission by service units are also included. Also provided is a method and apparatus for performing a Fast Fourier Transform (FFT). In one embodiment, a scalable FFT system is built using a novel dual-radix butterfly core.
Owner:HTC CORP

Data processing apparatus and method

A data processing apparatus communicates data bits on a predetermined number of sub-carrier signals of an Orthogonal Frequency Division Multiplexed (OFDM) symbol. The data processing apparatus comprises a parity interleaver operable to perform parity interleaving on Low Density Parity Check (LDPC) encoded data bits obtained by performing LDPC encoding according to a parity check matrix of an LDPC code including a parity matrix corresponding to parity bits of the LDPC code, the parity matrix having a stepwise structure, so that a parity bit of the LDPC encoded data bits is interleaved to a different parity bit position. A mapping unit maps the parity interleaved bits onto data symbols corresponding to modulation symbols of a modulation scheme of the OFDM sub-carrier signals. A symbol interleaver is arranged in operation to read-into a symbol interleaver memory the predetermined number of data symbols for mapping onto the OFDM sub-carrier signals, and to read-out of the interleaver memory the data symbols for the OFDM sub-carriers to effect the mapping, the read-out being in a different order than the read-in, the order being determined from a set of addresses, with the effect that the data symbols are interleaved on the sub-carrier signals. The set of addresses are generated by an address generator which has been optimised to interleave the data symbols on to the sub-carrier signals of the OFDM carrier signals for a given operating mode of the OFDM system, such as a 32K operating mode for DVB-T2 or DVB-C2.
Owner:SATURN LICENSING LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products