Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

46670 results about "Frequency band" patented technology

A frequency band is an interval in the frequency domain, delimited by a lower frequency and an upper frequency. The term may refer to a radio band or an interval of some other spectrum. The frequency range of a system is the range over which it is considered to provide satisfactory performance, such as a useful level of signal with acceptable distortion characteristics. A listing of the upper and lower limits of frequency limits for a system is not useful without a criterion for what the range represents.

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Radio communication system

There is disclosed a radio communication system in which a constitution of a base station and further a control station can be simplified. A radio communication system according to the present invention converts a received signal received by a plurality of antenna elements in a base station to a signal of different frequency band, and then conflates the converted signal in order to generate sub-carrier wave multiplex signal. The signal is converted to an optical signal, and then the optical signal is transmitted to a control station via an optical fiber. Or the control station performs weighting to phase of the transmitted signal transmitted from a plurality of antennas of a base station, and then performs frequency conversion to different frequency band, and then conflates the converted signal in order to generate the sub-carrier wave multiplex signal. The signal is converted to an optical signal, and then an optical signal is transmitted to the base station side via the optical fiber. The control station and the base station divides the received sub-carrier wave multiplex signal by each frequency band, and then the frequency of the divided signals are converted to the same frequency band in order to generate the transmitted / received signal of each antenna element. By such a constitution, it is possible to reduce constituent of the optical transmission components to the minimum and to simplify the constitution of the base station. Furthermore, it is possible to maintain the relative phase difference and the relative intensity of the transmitted / received signal of each antenna element. Because of this, it is possible to estimate an arrival direction of the received signal and to control radiation beam pattern of the transmitted signal.
Owner:KK TOSHIBA

Interference detector for patient monitor

A system is disclosed for detecting and calculating the level of ambient and / or environmental noise, such as electromagnetic interference generated by electric power lines, ambient lights, light dimmers, television or computer displays, power supplies or transformers, and medical equipment. In some embodiments, the system performs frequency analysis on the interference signal detected by light photodetectors and determines the power of the interference signal concentrated in the analyzed frequency bands. The worst-case interference level can be determined by selecting the maximum from the computed power values. In some embodiments, the determined interference signal power can be compared with the noise tolerance of a patient monitoring system configured to reliably and non-invasively detect physiological parameters of a user. The results of the comparison can be presented to the user audio-visually. In some embodiments, the system can be used to perform spot check measurements of electromagnetic interference.
Owner:MASIMO CORP

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Band-changing repeater with protocol or format conversion

A repeater allows terminals of a first communications system, employing a first air protocol or radio interface, to communicate with terminals of a second communications system, employing a second air protocol or radio interface different from the first. Where the first and second air protocols differ only in operating frequency, but are otherwise compatible, the repeater may linearly translate signals from the first operating frequency to the second operating frequency, and vice versa, without demodulating and remodulating the signals. Where the air protocols differ in other ways, the repeater receives and demodulates signals from the first system, converts the signals to a common format, and remodulates and retransmits the signals according to the second air protocol (and vice versa), in the same frequency bands or in different frequency bands. The repeater translates control and signalling information transmitted in compliance with one air protocol to a format which complies with the other air protocol and has the same or equivalent effect. For each of the two communications system, the repeater emulates the functions of a terminal in that communications system, so that corresponding terminals in that system may communicate transparently with the repeater. The repeater provides a connection between the two emulated terminals, thereby allowing a terminal of the first system to use the repeater to communicate with an otherwise incompatible terminal of the second system.
Owner:ALLEN TELECOM LLC

Apparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands

InactiveUS20050018201A1Improve signal-to-noise ratioImproves current data acquisition speed and availabilityDiagnostics using lightInterferometersBandpass filteringSpectral bands
Apparatus, method, logic arrangement and storage medium are provided for increasing the sensitivity in the detection of optical coherence tomography and low coherence interferometry (“LCI”) signals by detecting a parallel set of spectral bands, each band being a unique combination of optical frequencies. The LCI broad bandwidth source can be split into N spectral bands. The N spectral bands can be individually detected and processed to provide an increase in the signal-to-noise ratio by a factor of N. Each spectral band may be detected by a separate photo detector and amplified. For each spectral band, the signal can be band p3 filtered around the signal band by analog electronics and digitized, or, alternatively, the signal may be digitized and band pass filtered in software. As a consequence, the shot noise contribution to the signal is likely reduced by a factor equal to the number of spectral bands, while the signal amplitude can remain the same. The reduction of the shot noise increases the dynamic range and sensitivity of the system.
Owner:THE GENERAL HOSPITAL CORP

Ceramic antenna module and methods of manufacture thereof

ActiveUS20060092079A1Minimize reflection lossWithout adversely impacting radiation efficiencySimultaneous aerial operationsSolid-state devicesRF front endPermittivity
Circuit modules and methods of construction thereof that contain composite meta-material dielectric bodies that have high effective values of real permittivity but which minimize reflective losses, through the use of host dielectric (organic or ceramic), materials having relative permittivities substantially less than ceramic dielectric inclusions embedded therein. The composite meta-material bodies permit reductions in physical lengths of electrically conducting elements such as antenna element(s) without adversely impacting radiation efficiency. The meta-material structure may additionally provide frequency band filtering functions that would normally be provided by other components typically found in an RF front-end.
Owner:DE ROCHEMONT L PIERRE

Method and system for wireless networking using coordinated dynamic spectrum access

A method and system for coordinated dynamic access to radio spectrum for wireless networking includes defining a coordinated access band (CAB) from which radio access network (RAN) managers may request spectrum allocations in the form of time bound spectrum leases for their respective requesting base stations. In one embodiment of the present invention, a DIMSUMnet architecture is implemented to make some fundamental choices and to centralize the collection of information, such as spectral occupancy, thermal and adjacent frequency interference. Such collected information is subsequently used by a spectrum broker in making spectrum allocation decisions. The DIMSUMnet architecture of the present invention also introduces a RAN manager element to centralize the task of acquiring time bound spectrum leases and for configuring the base stations.
Owner:ALCATEL LUCENT SAS

Method for configuring and routing data within a wireless multihop network and a wireless network for implementing the same

A method for configuring a wireless network comprised of a control node and a multiplicity of individual nodes includes the steps of logically organizing the network into a plurality of bands Bi, wherein each of the bands Bi includes a plurality of the individual nodes and is located a number i of hops away from the control node, where i=0 through N, and N≧1, and then assigning a logical address to each of the individual nodes, and storing the assigned logical addresses in the respective individual nodes. The assigned logical address for each individual node includes a first address portion which indicates the band Bi in which that individual node is located, and a second address portion that identifies that node relative to all other individual nodes located in the same band. The network is preferably a packet-hopping wireless network in which data is communicated by transferring data packets from node-to-node over a common RF channel. Each of the individual nodes is preferably programmed to perform the step of comparing its own logical address to a routing logical address contained in each packet which it receives, and to either discard, re-transmit, or process the packet based upon the results of the comparison. The routing logical address contained in a received packet contains the full routing information required to route the packet from a sending node to a destination node along a communication path prescribed by the routing logical address. The control node is programmed to control the routing of packets by inserting the routing logical address into each packet which it transmit, detecting any unsuccessfully transmitted packets, detecting a faulty node in the communication path prescribed by the routing logical address in response to detecting an unsuccessfully transmitted packet, and changing the routing logical address of the unsuccessfully transmitted packet to a new routing logical address which prescribes a new communication path which does not include the detected faulty node. Also disclosed are a wireless network and a network node which are designed to implement the foregoing network configuration and / or routing methods.
Owner:SIGNIFY HLDG BV

Apparatus for OFDMA transmission and reception for coherent detection in uplink of wireless communication system and method thereof

In the resource mapping method for data transmission, a time-frequency resource of a slot interval including OFDM symbols is divided into traffic channels and shared among the subscribers, the traffic channel including resource blocks uniformly distributed in the whole transmit frequency band, the resource block including consecutive subcarriers of consecutive received symbols having at least one inserted pilot symbol. The pilot symbols and the channel-encoded and modulated data symbols are processed by time-frequency mapping according to the resource-block-based mapping method to generate received symbols. The receiver separates the received symbols by subscribers according to the resource-block-based mapping method in a frequency domain, and performs iterative channel estimation, demodulation, and decoding by using the pilot and a data reference value after decoding for each traffic channel.
Owner:ELECTRONICS & TELECOMM RES INST

Method for authenticating an individual by use of fingerprint data

A method for authenticating an individual by use of fingerprint data that involves two different broad steps. The first step is to obtain a biometrics fingerprint signature template (“BFST”) for an individual in an enrollment process by selecting a plurality of bands for the BFST and obtaining a plurality of tracks corresponding to each of the plurality of bands by use of an enrollment frame of a selected finger of the individual, wherein the plurality of bands are spatially referenced to the enrollment frame and can be spatially referenced to a reference barrier. The second step is to authenticate (or not) a candidate finger against one or more BFST in an authentication process in which a swipe direction and an access code for the individual are selected, a plurality of candidate tracks are obtained from the candidate finger through use of the reference barrier in an authentication unit so that each of the plurality of candidate tracks is spatially referenced so as to be within a corresponding one of the plurality of bands, calculating a similarity index for each of the plurality of candidate tracks and each of the plurality of tracks for the band to which the candidate track corresponds by use of a Fast Fourier-transform fingerprint algorithm, and multiplying each maximum similarity index obtained for each of the plurality of candidate tracks to obtain a match index which indicates a match if it exceeds a preselected threshold.
Owner:WONG JACOB Y

System and Method for Adaptive Transmission Time Interval (TTI) Structure

Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons, such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
Owner:HUAWEI TECH CO LTD

Generating and matching hashes of multimedia content

Hashes are short summaries or signatures of data files which can be used to identify the file. Hashing multimedia content (audio, video, images) is difficult because the hash of original content and processed (e.g. compressed) content may differ significantly. The disclosed method generates robust hashes for multimedia content, for example, audio clips. The audio clip is divided (12) into successive (preferably overlapping) frames. For each frame, the frequency spectrum is divided (15) into bands. A robust property of each band (e.g. energy) is computed (16) and represented (17) by a respective hash bit. An audio clip is thus represented by a concatenation of binary hash words, one for each frame. To identify a possibly compressed audio signal, a block of hash words derived therefrom is matched by a computer (20) with a large database (21). Such matching strategies are also disclosed. In an advantageous embodiment, the extraction process also provides information (19) as to which of the hash bits are the least reliable. Flipping these bits considerably improves the speed and performance of the matching process.
Owner:GRACENOTE

Method and Apparatus of Transmitting, Receiving, Displaying and Playing Weather Data

A transmitter transmits time synchronized data via a pager / WiMax / 802.x access to a receiver system, wherein the receiver system is programmed to receive data for specific geographic locations. The geographic locations may be specified by the user or by the receiver system, and includes state, zip codes, towns, counties, towns, or cardinal regions. The receiver is able to find its location when outside its cell region and is able to synchronize to the data transmitted in the new cell region. Further, the receiver system is able to remotely monitor weather data and other information at a different location via wireless Internet or voice over IP. A transceiver may also be used to receive weather or alert data. In response to receiving data, the transceiver transmits the data to low powered devices in a house using a different frequency band than the frequency band it received the data.
Owner:LA CROSSE TECH

Channel, coding and power management for wireless local area networks

A system and method are disclosed for the management of WLANs in cases where unmanaged access points are present as well as with the addition or removal of access points. The disclosed system and method use signal data and network traffic statistics collected by mobile units to determine optimal configuration settings for the access points. The access point settings so managed can include the operating channel or center frequency, orthogonal signal coding used (optionally including the data rate), if any, and the transmission power. The solutions computed can account for the inherent trade-offs between wireless network coverage area and mutual interference that may arises when two or more access points use the same or overlapping frequency bands or channels and the same or similar signal coding.
Owner:WAVELINK

Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems

An apparatus and process for allocating carriers in a multi-carrier system is described. In one embodiment, the process comprises determining a location of a subscriber with respect to a base station, selecting carriers from a band of carriers to allocate to the subscriber according to the location of the subscriber with respect to the base station, and allocating selected carriers to the subscriber.
Owner:KAON SYST +1

Allocation of radio resource in orthogonal frequency division multiplexing system

An uplink capacity is increased by a method in which more than two mobile stations simultaneously use a radio resource allocated to one mobile station. A method of allocating a radio resource in an orthogonal frequency division multiplexing system comprises receiving data associated with a radio resource allocation map from a base station, wherein the radio allocation map comprises control parameters for transmitting uplink data to the base station. The control parameters comprises orthogonal pilot pattern indicator for using orthogonal pilot patterns associated with supporting at least concurrent dual transmission by at least one mobile station, and for use in the same frequency band and same time duration. The orthogonal pilot patterns comprises at least a minus pilot being used for an uplink basic allocation unit. The mobile station then transmits uplink data to the base station by using the orthogonal pilot patterns.
Owner:LG ELECTRONICS INC

Method and system for integrated wireless power and data communication

A method and system of integrated wireless power and data transmission in a wireless device having a data communication circuit for wireless data communication and a power reception circuit including a charge storage unit. The wireless device is tuned to receive wireless RF signals in a certain frequency band via an antenna. Switching between power reception mode and data communication mode is detected. Received RF signal electrical charge is selectively distributed to the power reception circuit and / or the data communication circuit based on the switching mode and / or strength of the RF signal.
Owner:SAMSUNG ELECTRONICS CO LTD

Wireless power system with capacitive proximity sensing

This disclosure provides systems, methods and apparatus for tuning a transmit coil for operation in a plurality of frequency bands. In one aspect, a method of wireless power transmission is provided. The method includes exciting a first part of a wireless power transmission system, via a wireless power transmitter. The method further includes detecting, in the presence of a non-charging object, a first change in a first parameter. The first parameter is indicative of a coupling between the non-charging object and the first part. The method further includes varying a characteristic of the wireless power transmission based on said first change.
Owner:QUALCOMM INC

Spatial guardbands for terrestrial reuse of satellite frequencies

Satellite radiotelephone systems include a space-based component that is configured to provide wireless radiotelephone communications in a satellite footprint over a satellite radiotelephone frequency band. The satellite footprint is divided into a plurality of satellite cells, in which satellite radiotelephone frequencies of the satellite radiotelephone frequency band are spatially reused. An ancillary terrestrial network is configured to terrestrially reuse at least one of the ancillary radiotelephone frequencies that is used in a satellite cell in the satellite footprint, outside the cell and in some embodiments separated therefrom by a spatial guardband.
Owner:ATC TECH LLC

Resource allocation to terrestrial and satellite services

There is provided a method for improving an allocation of resources, i.e., frequency and power, to terrestrial services and satellite services that use a same frequency band. The method includes determining a demand (DS) for a resource by users of a satellite system, determining a demand (DT) for the resource by users of a terrestrial system, and allocating the resource between the satellite system and the terrestrial system based on a ratio of DS to DT.
Owner:GLOBALSTAR INC

Low-cost radio replacement utilizing RFID technology

A radio replacement using RFID technology in an RF-enabled device is provided. The RF-enabled handheld, portable, or otherwise mobile device is equipped with an RFID tag having read and write capability. Data exchange occurs between the RFID tag and a network of RFID interrogators placed to provide adequate coverage of the area over which the device might move. As a result of replacing a full functioning transmitting / receiving radio with an RFID tag, the cost of the RF-enabled device could be significantly reduced, its battery life could be extended, and it could operate in a frequency band that does not require FCC approval. Additionally, this invention could provide tracking and access control using the RFID tag and interrogators.
Owner:INTERMEC IP

Recharging apparatus

An energy harvesting circuit has an active automatic tuning circuit to search for broadcast frequencies in a band of interest and selecting only those broadcast signals received with sufficient RF strength to be used in energy harvesting. This circuit would provide power storage devices with a circuit that has a means to select the ambient RF that can maximize or enhance the performance of an RFID circuit by increasing the amount of energy for harvesting. This automatic tuning would enable a power storage devices charger circuit to move from location to location without manual tuning of the circuit and increase the effective range of an RFID circuit.
Owner:UNIVERSITY OF PITTSBURGH

RF Processing Circuit and Wireless Communication Device Using the Same

A radio-frequency (RF) processing circuit used in a wireless communication device is disclosed. The RF processing circuit comprises an RF front-end circuit, coupled to a first antenna, a second antenna, a first wireless communication module and a second wireless communication module, for switching couplings between the first antenna and the second antenna, and the first wireless communication module and the second wireless communication module according to a control signal; and a control unit, for generating the control signal to the RF front-end circuit according to operation frequency bands and operation conditions of the first wireless communication module and the second wireless communication module.
Owner:XUESHAN TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products