Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

366 results about "Optical frequencies" patented technology

An active optical frequency standard is a kind of laser source emitting light with a very well-defined and known optical frequency, or sometimes a set of a few or even many well-defined optical frequency components in a frequency comb . Combined with an optical clockwork, such a frequency standard can form the basis of an optical clock .

Optical frequency sweep control and readout by using a phase lock

The invention allows for the accurate, real-time readout of the optical frequency of a swept-wavelength laser device by counting the number of fringes of a calibrated etalon that occur as the laser is swept. The distinguishing feature of the present invention is that the etalon fringe signal is phase-locked to a slave signal of a higher multiple frequency. The higher frequency of the slave signal divides the frequency interval of the etalon fringe spacing by the additional frequency multiple. The slave signal therefore generates a scale for optical frequency that is of higher resolution than possible with the etalon alone. The phase-lock also insures that the slave signal tracks monotonic scans of the optical frequency regardless of scan profile.
The invention also allows for the precise, real-time control of the optical frequency of a laser during the sweep of the laser. By comparing a signal proportional to the transmission of light through a calibrated Fabry-Perot etalon to a reference control signal, the phase difference between etalon transmission signal and the reference signal may be fed back to the laser to drive the phase difference to zero (phase-lock). The phase-lock ensures that the optical frequency profile of the sweep follows exactly the frequency profile of the reference signal. Tailoring the input reference signal controls the velocity of the optical-frequency sweep.
Owner:PRECISION PHOTONICS CORP

Heterodyne reflectomer for film thickness monitoring and method for implementing

The present invention is directed to a heterodyne reflectometer system and method for obtaining highly accurate phase shift information from heterodyned optical signals, from which extremely accurate film depths can be calculated. A linearly polarized light comprised of two linearly polarized components that are orthogonal to each other, with split optical frequencies, is directed toward a film causing one of the optical polarization components to lag behind the other due to an increase in the optical path in the film for that component. A pair of detectors receives the beam reflected from the film layer and produces a measurement signal, and the beam prior to incidence on the film layer and generates a reference signal, respectively. The measurement signal and reference signal are analyzed by a phase detector for phase shift. The detected phase shift is then fed into a thickness calculator for film thickness results. A grating interferometer may be included with the heterodyne reflectometer system with a grating, which diffracts the reflected beam into zeroth- and first-order bands, which are then detected by separate detectors. A detector receives the zeroth-order beam and generates another measurement signal. Another detector receives the first-order beam and generates a grating signal. The measurement signal from the grating and reference signal may be analyzed by a phase detector for phase shift, which is related to the thickness of the film. Conversely, either measurement signal may be analyzed with the grating signal by a phase detector for detecting a grating phase shift. The refractive index for the film may be calculated from grating phase shift and the heterodyne phase shift. The updated refractive index is then used for calculating thickness.
Owner:VERITY INSTR

Raman amplifier, raman amplifier control method, and optical communication system

The present invention provides a Raman amplifier and the like comprising a structure for keeping the flatness of power spectrum of Raman-amplified signal light. The Raman amplifier comprises an optical fiber for Raman-amplifying a plurality of signal channels of signal light having respective center optical frequencies different from each other; a pumping light supply section for supplying N (N being an integer of 2 or more) pumping channels of pumping light having respective center optical frequencies different from each other to the optical fiber; and a feedback section for detecting a part of the signal light Raman-amplified within the optical fiber when the pumping light is supplied thereto, and controlling the pumping light supply section such that the Raman-amplified signal light has a substantially flat power spectrum with respect to an optical frequency direction according to the result of detection. In particular, the feedback section divides the detected Raman-amplified signal light into N optical frequency ranges defined so as to include respective Raman amplification peaks as optical frequencies lower than respective center optical frequencies of the pumping channels of pumping light by an optical frequency shift of about 15 THz, and controls the pumping light supply section such that the Raman-amplified signal light has a power fluctuation of 2 dB or less in each of thus divided N optical frequency ranges.
Owner:SUMITOMO ELECTRIC IND LTD

Heterodyne reflectometer for film thickness monitoring and method for implementing

The present invention is directed to a heterodyne reflectometer system and method for obtaining highly accurate phase shift information from heterodyned optical signals, from which extremely accurate film depths can be calculated. A linearly polarized light comprised of two linearly polarized components that are orthogonal to each other, with split optical frequencies, is directed toward a film causing one of the optical polarization components to lag behind the other due to an increase in the optical path in the film for that component. A pair of detectors receives the beam reflected from the film layer and produces a measurement signal, and the beam prior to incidence on the film layer and generates a reference signal, respectively. The measurement signal and reference signal are analyzed by a phase detector for phase shift. The detected phase shift is then fed into a thickness calculator for film thickness results. A grating interferometer may be included with the heterodyne reflectometer system with a grating, which diffracts the reflected beam into zeroth- and first-order bands, which are then detected by separate detectors. A detector receives the zeroth-order beam and generates another measurement signal. Another detector receives the first-order beam and generates a grating signal. The measurement signal from the grating and reference signal may be analyzed by a phase detector for phase shift, which is related to the thickness of the film. Conversely, either measurement signal may be analyzed with the grating signal by a phase detector for detecting a grating phase shift. The refractive index for the film may be calculated from grating phase shift and the heterodyne phase shift. The updated refractive index is then used for calculating thickness.
Owner:VERITY INSTR

Narrow linewidth semiconductor laser device

There is provided a narrow linewidth semiconductor laser device comprising a semiconductor laser and a low noise current source operatively connected to the laser for supplying current thereto, the current source being particularly adapted to prevent a significant degradation of the frequency noise spectrum of the laser. The laser device also has an optical frequency discriminator providing an error signal representative of the optical frequency of the laser. The laser device also has control means having a feedback network for providing a frequency feedback signal. The feedback network is particularly adapted to the frequency noise spectrum of the frequency discriminator, the frequency noise spectrum of the laser and the tuning response of the laser. The control means is also provided with sequencing means for allowing to automatically enable frequency locking of the laser on the frequency reference of the optical frequency discriminator. The laser device is provided with an enclosure for enclosing the frequency discriminator to isolate the frequency discriminator from external perturbations. Such an arrangement is particularly advantageous since it allows to provide an improved sub-kHz linewidth and a high coherence while being compact, lightweight and highly reliable. Moreover, the narrow linewidth semiconductor laser device of the present invention can advantageously be automatically operated.
Owner:TERAXION

Tunable terahertz radiation source based on difference frequency cherenkov effect and modulation method

The invention relates to the non linear optical frequency conversion. To realize output of high power THz wave which can be continuously tuned, and stable running at room temperature, the technical scheme used by the invention is that: a tunable terahertz radiation source based on difference frequency cherenkov effect is composed of a laser device, a frequency doubling crystal, a double wavelength parametric oscillator, a harmonic mirror, a polarization filter, a combined beam mirror, a column lens and a difference frequency crystal; the harmonic mirror is placed between the frequency doubling crystal and the double wavelength parametric oscillator; the double wavelength parametric oscillator is II type phase matching KTP (Potassium Titanyl Phosphate) crystal OPO (Optical Parametric Oscillator); the polarization filter, the combined beam mirror and the column lens are arranged between the parametric oscillator and the difference frequency crystal; the difference frequency crystal is amagnesium oxide doped lithium niobate crystal with molecular formula of MgO:LiNbO3 or MgO:LN, and the generated THz wave is coupled and output by an Si prism on the side surface of the difference frequency crystal. The tunable terahertz radiation source based on difference frequency cherenkov effect is mainly applied to the optical frequency conversion.
Owner:TIANJIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products