Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1303results about "Optical transmission adaptations" patented technology

Home networking gateway

A home networking gateway provides an interface between an HFC network and an in-home network. Full voice and data connection between the HFC network and each device in the in-home network is provided through the interface. A translator included in the home networking gateway is utilized to provide a mapping between the communication protocols used in the in-home network and the protocols used in the HFC network, eliminating the need for the in-home network to be dependent upon the HFC-specific protocols.
Owner:GOOGLE TECH HLDG LLC

Dynamic bandwidth allocation

InactiveUS7069577B2Prevents untoward spectral effectMore balancedError preventionModulated-carrier systemsFiberModem device
The communication system includes a hybride fiber / coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber / coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber / coax distribution network. The head end includes head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information. The system further includes service units, each service unit operatively connected to the hybrid fiber / coax distribution network for upstream transmission of telephony and control data in the second frequency bandwidth and for receipt of the downstream control data and telephony in the first frequency bandwidth. Each service unit includes a service unit multicarrier modem for modulating at least the upstream telephony information on at least one carrier orthogonal at the head end terminal to another carrier in the second frequency bandwidth and for demodulating at least downstream telephony information modulated on at least a band of a plurality of orthogonal carriers in the first frequency bandwidth. Each service unit also includes a controller operatively connected to the service unit multicarrier modem for controlling the modulation of and demodulation performed by the service unit multicarrier modem. A method of monitoring communication channels, a distributed loop method for adjusting transmission characteristics to allow for transmission of data in a multi-point to point communication system, a polyphase filter technique for providing ingress protection and a scanning method for identifying frequency bands to be used for transmission by service units are also included. Also provided is a method and apparatus for performing a Fast Fourier Transform (FFT). In one embodiment, a scalable FFT system is built using a novel dual-radix butterfly core.
Owner:HTC CORP

Fiber to the home (FTTH) multimedia access system with reflection PON

A Fiber-to-the-Home (FTTH) multi-media access system and method are provided in which voice, video and data signals are transported over a passive optical network (PON) between a central office location and a plurality of subscriber home network units (HNUs). Optical video distribution circuitry and telephony / data distribution circuitry at the central office location are included in the system and operate to send and receive CATV video, PBS video television, telephony and Packet data signals to and from the HNUs via the PON. Optical multiplexing / demultiplexing circuitry operating at the central office combines the video signals, which are operating at one optical wavelength, with the telephony / data signals, which are operating at a second, distinct optical wavelength. These combined optical signals are then transported over the PON to the HNUs. The PON includes a plurality of distribution fibers coupled to a plurality of passive optical splitters, which are each coupled to a plurality of drop fibers that connect to the HNUs. The HNUs receive the combined optical signals, demultiplex and convert the optical signals into corresponding electrical signals, which are in turn coupled through the HNU to the video, data and telephony networks within the home. The HNUs also receive upstream electrical signals from devices within the home, multiplex and convert these electrical signals into upstream optical signals, and transmit these upstream optical signals to the central office.
Owner:ADVANCED FIBER ACCESS CORP

Coin operated entertainment system

This invention in certain example instances relates generally to coin-operated video entertainment systems. More particularly, certain exemplary aspects of the invention provide methods and / or systems for controlling access to a portable coin-operated interactive entertainment device that may be used to play video games and access other forms of entertainment as well as providing features via such portable coin-operated interactive entertainment devices.
Owner:TOUCHTUNES MUSIC CORP

System and method for distributing information via a communication network

A communication system for distributing information via a network to one or more subscribers includes a multi-port switch, one or more radio frequency (RF) modems coupled to respective ports of the switch, a combiner and a transmitter. The switch forwards source information to the RF modems based on address information. Each RF modem modulates and up converts information from the switch to an RF signal within a respective subscriber channel of the television broadcast spectrum. Each channel is assigned to one or more subscribers, and each subscriber is allocated unshared bandwidth. Each channel may be further divided into unshared bandwidth increments, so that multiple subscribers may share a single channel. The combiner combines modulated information from each RF modem into a combined signal and the transmitter transmits the combined signal to the subscribers via the network. An HFC network including a distribution point and one or more optical nodes is contemplated, each optical node serving a particular geographic area via a corresponding coaxial cable. Each subscriber destination includes a gateway device or the like that is tuned to a corresponding channel to retrieve source information from that channel, and to deliver the information to one or more local subscriber devices. The gateway further includes converters, a modulator and an up converter to receive and transmit subscriber information upstream to the distribution point. The gateways and an address resolution server enforce point to point communications. A bandwidth manager allocates bandwidth and monitors bandwidth usage.
Owner:UBER TECH INC

Antenna System and Methods for Wireless Optical Network Termination

Optical network termination systems, devices and methods including an optical network terminal (ONT) having a processor in communication with an external optical fiber. The ONT processors further in communication with a wireless access point and at least one electrically conductive internal transport medium, both providing for the communication of telecommunication signals with devices located within a customer premises. The wireless access point and in certain instances the processor are back powered over the electrically conductive internal transport medium from AC power within the premises. In certain embodiments, the wireless access point communicates with devices within the premises over a distributed antenna.
Owner:CENTURYLINK INTPROP

Method and system for processing downstream packets of an optical network

Unlike the conventional art which polices data at the entry points of a network, a transceiver node can police or monitor downstream bandwidths for quality of service at exit portions of an optical network. That is, the transceiver node can police downstream communication traffic near the outer edges of an optical network that are physically close to the subscribers of the optical network. In this way, a network provider can control the volume or content (or both) of downstream communications that are received by subscribers of the optical network. In addition to controlling the volume of communications that can be received by a subscriber, the transceiver node employs a plurality of priority assignment values for communication traffic. Some priority assignment values are part of a weighted random early discard algorithm that enables an output buffer to determine whether to drop data packets that are destined for a particular subscriber. In one exemplary embodiment, a weighted random early discard (WRED) priority value can be assigned according to the type of communication traffic supported by a packet.
Owner:ARRIS SOLUTIONS

Apparatus, system, computer program, and method for providing a multimedia-over-coax-alliance network in conjunction with an optical network

An apparatus, system, computer program, and method for providing a Multimedia over Coax Alliance (MoCA) (or other multimedia-over-coaxial cable technology) network in conjunction with an optical network. In example embodiments, MoCA data is communicated between network nodes in an optical signal. In other example embodiments, MoCA data, or other data, is transmitted in optical frequencies above 860 MHz.
Owner:TELLABS VIENNA

Data transmission over multiple upstream channels within a cable modem system

A system and method are disclosed for transmitting upstream data from a cable modem within a cable television plant. One aspect of the invention pertains to a method that includes transmitting a first portion of the upstream data on a first upstream channel from the cable modem and transmitting a second portion of the upstream data on a second upstream channel from the cable modem. The second upstream channel differs from the first upstream channel. In another aspect, the invention pertains to a cable modem that includes a processor configured to initiate transmission on multiple upstream channels. The cable modem further includes an upstream transmitting component operating in conjunction with the processor and configurable by the processor to transmit data over multiple upstream channels. In one embodiment, the upstream transmitting component includes a first transmitter that is capable of being configured by the processor to transmit data at both a first upstream channel and a second transmitter that is capable of being configured by the processor to transmit at a second upstream channel that differs from the first upstream channel.
Owner:CISCO SYSTEMS INC

Method for transmitting digital image signal, digital image transmitting device, digital image sending device and digital image receiver

A multiplexer of a transmission section generates a clock signal by multiplying a reference clock signal of a digital image signal by a predetermined number ‘K’. A parallel digital image signal is converted into a serial digital signal on the basis of the clock signal, and the serial digital signal is converted into an optical signal in an optical transmission section for transmitting. A demultiplexer extracts a reception clock signal from a serial digital reception signal which is converted into an electric signal in an optical reception section of a reception section, the serial digital reception signal is converted into a parallel signal and a signal corresponding to the parallel digital image signal on the basis of the reception clock signal, and a clock signal corresponding to the reference clock signal is recovered by multiplying the reception clock signal by ‘1 / K’.
Owner:SEIKO EPSON CORP

Method and system for processing upstream packets of an optical network

A protocol for an optical network can control the time at which subscriber optical interfaces of an optical network are permitted to transmit data to a transceiver node. The protocol can prevent collisions of upstream transmissions between the subscriber optical interfaces of a particular subscriber group. With the protocol, a transceiver node close to the subscriber can allocate additional or reduced upstream bandwidth based upon the demand of one or more subscribers. That is, a transceiver node close to a subscriber can monitor (or police) and adjust a subscriber's upstream bandwidth on a subscription basis or on an as-needed basis. The protocol can account for aggregates of packets rather than individual packets. By performing calculation on aggregates of packets, the algorithm can execute less frequently which, in turn, permits its implementation in lower performance and lower cost devices, such as software executing in a general purpose microprocessor.
Owner:ARRIS ENTERPRISES LLC

Method of transforming hfc CATV analog fiber transmission to digital fiber transmission

A method of converting legacy HFC CATV cable systems, which transmit data over the optical fiber portion of the system using the optical counterpart of analog RF waveforms, such as RF QAM waveforms transduced to corresponding optical QAM waveforms, to improved HFC CATV systems that transmit data over the optical fiber using optical fiber optimized protocols, such as Ethernet frames and other optical fiber optimized digital transport protocols. According to the method, most aspects of the legacy HFC CATV system may be retained, however at the CATV head end, the optical fiber transmitter system is replaced by an improved system that extracts the underlying symbols from legacy waveforms, packages these symbols into optical fiber optimized packets, and transmits downstream. The legacy optical fiber nodes are replaced with improved nodes capable of receiving the packets and remodulating the symbols into RF waveforms suitable for injection into the system's CATV cable.
Owner:VECIMA NETWORKS

Signal transmission device

ActiveUS20050105913A1Effect on powerSafety of laser lightOptical transmission adaptationsCathode-ray tube indicatorsEngineeringLight signal
A transmission unit of a signal transmission device includes: a transmission-side detection unit that detects image information from an inputted electrical signal; a receiving unit that receives, from a reception unit, a status signal representing an arrival status of an outputted optical signal; and a control unit that controls an electrical-optical conversion unit on the basis of the detection result of the transmission-side detection unit and the status signal of the receiving unit so that the output of the optical signal is shut down in at least one of a case where image information is not included in an electrical signal and a case where an optical signal has not arrived.
Owner:FUJIFILM BUSINESS INNOVATION CORP

Digital video signal interface module for transferring signals to a long distance

The present invention discloses a digital video signal interface module that enables a distance between a computer having a digital video output and a monitor having a digital video input to length and comprises a laser driver and a laser diode receiving digital video signals of Red (R), Green (G), Blue (B), Clock (C) outputted from a computer and converting the signals to a laser singals, respectively; a photodiode (PD) receiving the respective laser signals and restoring to electric signals; a photodiode amplifier amplifying the signals of the photodiode and transferring the signals to a Liquid Crystal Display (LCD) monitor; a plurality of an optic fiber installed between the respective laser diode and the respective phoptodiode and transferring the laser signals; and a power supply line and a ground voltage line installed between the computer and the LCD monitor along the optic fibers and supplying a power voltge to the laser driver and the PD amplifier.
Owner:OPHIT

Cable television return link system with high data-rate side-band communication channels

A Cable Television (CATV) digital return link system that provides dedicated, high-speed, full-duplex and point-to-point connections between users and the head end system is disclosed. The CATV digital return link system includes return path transmitters, intermediate hubs and a head end hub coupled to each other via a network of fiber optics cables. The return path transmitters are each coupled to a relatively large number of users via a local CATV-subtree. Signals from cable modems are transmitted via the local CATV-subtree to the return path transmitters for transmission to the head end. A number of users are individually and directly connected to the return path transmitters. Data from these directly connected users is transmitted to the head end via the network of fiber optics cables in conjunction with the RF data from the subtree. Likewise, data from the head end to these directly connected users is transmitted in the forward path direction using the digital return link system.
Owner:II VI DELAWARE INC

Distributed block frequency converter

A distributed block frequency converter that combines multiple channel signals into a combined radio frequency (RF) signal suitable for transport via selected media. The converter includes combiners that each combine at least two channel signals into a combined channel signal, an up-converter synthesizer that generates an up-converter local oscillator (LO) signal, up-converter mixers that each mix a combined channel signal with the up-converter LO signal to provide a corresponding intermediate frequency (IF) signal, bandpass filters that each filter an IF signal, down-converter synthesizers, down-converter mixers that each mix a down-converter LO signal with a corresponding filtered signal to provide a corresponding RF signal, and an RF combiner that combines the RF signals into a single RF signal. The down-converter synthesizers are adjustable to achieve frequency agility on a block by block basis.
Owner:INCEPTIA +1

System and method for multiplexing broadband signals

A frequency agile cable modem termination system which is configured to receive cable TV or other broadband signals on a frequency allocated basis. Cable TV headend may receive cable TV modem or other signals via optical / electrical converters and other links, and route those signals through a frequency multiplexer to divide individual feeds into separated frequency slots. The cable modem termination system may then have receivers tuned to individual slots allocated to data feeds, such as Internet, video, telephony or other sources, and route those sources over the Internet. Upon a failure condition within any given receiver or other component, a backup cable modem termination system, connected to the same common bus as the main or active system, may be rapidly activated by having backup receivers contained in that unit tuned to appropriate frequencies to pick up the signals within the corresponding band. Reliability and robustness is increased, and cabling requirements are decreased.
Owner:NORTEL NETWORKS LTD +1

System and method for transmitting data on return path of a cable television system

An optical signal return path system includes a transmitter having a sample clock generator for generating a sample clock and an RF signal receiver for receiving and converting an analog RF data signal into a first data stream of digitized RF data samples at a rate determined by the sample clock. Supplemental channel circuitry provides a second data stream. A multiplexor receives and combines the first data stream and second data stream, and an optical transmitter converting the combined data stream into a serialized optical data signal for transmission over an optical fiber. The second data stream may contain maintenance data reflecting an operational state of the transmitter. A receiver receives the optical data signal and recovers therefrom a digital data stream and an associated first clock having an associated first clock rate. The data stream is stored in a memory device at the first clock rate. A clock generator generates a second clock having an associated second clock rate that is adjusted in accordance with a clock control signal. A control circuit reads data from the memory device at a rate corresponding to the second clock rate and generates a fullness signal that indicates whether the memory device is more full than a predefined threshold fullness level. A clock speed adjusting circuit generates the clock control signal in accordance with the fullness signal.
Owner:II VI DELAWARE INC

Method and system for providing a return path for signals generated by legacy terminals in an optical network

A return path system includes inserting RF packets between regular upstream data packets, where the data packets are generated by communication devices such as a computer or internet telephone. The RF packets can be derived from analog RF signals that are produced by legacy video service terminals. In this way, the present invention can provide an RF return path for legacy terminals that shares a return path for regular data packets in an optical network architecture.
Owner:ARRIS SOLUTIONS

Fiber-optic access network utilizing CATV technology in an efficient manner

A system is provided for combining conventional HFC plants with fiber-optic access systems (e.g., fiber-to-the-home or fiber-to-the-curb) that share a head-end and other equipment. A robust modulation format, such as QPSK, having a sufficient SNR to transmit information (e.g., data, digital audio and digital video) downstream to users' premises via a fiber-optic access system is used. Also, a method and apparatus is provided for converting a first modulation format for information received via a fiber-optic access system to a modulation format compatible with customer premises equipment.
Owner:AT&T INTPROP I L P

FTTH system based on passive optical network for broadcasting service

A fiber to the home (FTTH) system based on a passive optical network (PON) includes an optical line terminal (OLT) block, an optical network terminal (ONT) block, and an optical distribution network (ODN). The ONT block includes a video-optical line terminal (V-OLT) and an optical line terminal (OLT) in order to output optical signals of the video-optical line terminal (V-OLT) and the optical line terminal (OLT) by multiplexing the optical signals. The VOLT receives cable TV, master antenna TV, and satellite broadcasting optical signals inputted from a broadcasting service network so as to output received signals as a first optical signal having a predetermined wavelength band. The OLT includes a first downstream data optical transmitter and a first upstream data optical receiver and outputs a data communication signal inputted from a data service network as a second optical signal having different wavelength from the video-optical line terminal. The ONT block includes a video-optical network terminal (V-ONT) and an optical network terminal (ONT) in order to split multiplexed data communication signals, and cable TV broadcasting, master antenna TV broadcasting, and satellite broadcasting optical signals. The V-ONT processes the split cable TV broadcasting, master antenna TV and satellite broadcasting optical signals so as to provide subscribers with the split cable TV broadcasting, master antenna TV and satellite broadcasting optical signals. The optical network terminal (ONT) has an upstream data optical transmitter and a downstream data optical receiver so as to process split data communication signals. The optical distribution network (ODN) connects the optical line terminal block to the optical network terminal as an optical transmission medium.
Owner:SAMSUNG ELECTRONICS CO LTD

Optical signal transmission apparatus and optical signal transmission method

The present invention provides an optical signal transmission apparatus for carrying out bi-directional light transmission. The optical signal transmission apparatus includes: a light sending module, for sending an optical main-signal having at least one data width, and receiving an optical sub-signal including a control signal; a light receiving module for receiving the optical main-signal and sending the optical sub-signal; and an optical cable for connecting between the light sending module and the light receiving module, wherein the light sending module comprises a control component which controls the output of the optical main-signal such that the output of the optical main-signal is stopped, when the optical sub-signal, which includes as data the reception status of the optical main-signal, is not being received, or when the reception status of the optical main-signal is indicating non-receiving.
Owner:FUJIFILM BUSINESS INNOVATION CORP

Interface module for transmitting digital video signal

An interface module for transmitting a digital video signal includes: a transmitting interface unit which is designed to be connected to a host device for outputting a video signal, and which has a cable connection consisting of a 4-core optical fiber cable and a 4-core male connector provided at one end thereof; a receiving interface unit having a cable connection designed to be connected to a video output display unit and consisting of a 4-core optical fiber cable and a 4-core male connector provided at one end thereof; and an optical cable unit for transmitting TMDS signals consisting of RGB signals and clock signals. The transmitting and receiving interface units are interconnected by the optical cable unit. The transmitting interface unit includes a second integrated circuit outputting identification information (DDC signal) associated with the video output display unit.
Owner:SUMITOMO ELECTRIC IND LTD

System and method for propagating satellite TV-band, cable TV-band, and data signals over an optical network

An optical network can include a data service hub, a laser transceiver node, and a subscriber optical interface. The data service hub can comprise a satellite antenna and a RF receiver for receiving satellite TV-band electrical signals. These electrical signals can be converted into the optical domain and then propagated over the optical network through optical waveguides to the subscriber optical interface. The subscriber optical interface can comprise an optical filter and a satellite analog optical receiver. The optical filter can separate the satellite TV-band optical signals having a first optical wavelength from other optical signals such as cable TV-band optical signals with a second optical wavelength and data optical signals with a third optical wavelength. The satellite analog optical receiver can further comprise various mechanisms for controlling access to the satellite TV-band signals.
Owner:ENABLENCE USA FTTX NETWORKS

DWDM CATV return system with up-converters to prevent fiber crosstalk

A hybrid fiber cable network includes multiple nodes, each of which receives a first multi-carrier return signal from multiple customers with carrier signals in a first frequency band. In a fiber-hub, one or more first multi-carrier signals are converted into a second multi-carrier signal with carrier signals in a second band. Each information signal modulates a different higher frequency carrier signal in the second signal. A multitude of second multi-carrier signals are converted into optical signals with different optical wavelengths, multiplexed onto an optical fiber, and transmitted to the head-end. The first frequency band is below 200 MHz, preferably from 5 to 50 MHz. The second frequency band is above 200 MHz, preferably between 300 and 1200 MHz to reduce crosstalk due to stimulated Raman scattering (SRS). Preferably, each second frequency band is no more than one octave wide, and more preferably, no more than one half an octave wide.
Owner:BROADBAND ROYALTY

Fiber-to-the-seat in-flight entertainment system

A modular, scalable, extensible, In-Flight Entertainment (IFE) data communication system is described. In one embodiment, a server / switch line replaceable unit including at least one server, at least one switching element and a plurality of fiber optic transceivers communicates with a plurality of passenger seat video display units over fiber optic cables. A server, such as, for example, an audio server, a video server, an audio / video server, a game server, an application server, a file server, etc, provides data (e.g., entertainment programming, internet file data, etc.) to the video display unit. In one embodiment, a hybrid switch unit provides flexible communication between one or more servers and the passenger seats.
Owner:GLOBAL EAGLE ENTERTAINMENT

Ethernet PON using time division multiplexing to converge broadcasting/video with data

An Ethernet passive optical network provides a subscriber with a high speed and large capacity data service and a real time digital broadcast / video service. The network includes an optical line terminal for frame-multiplexing broadcast / video signals, which are obtained by performing a switching operation and a time-slot multiplexing with respect to a plurality of digital broadcast / video data delivered from external broadcasting vendors according to broadcast / video selection information delivered from each user, and communication data delivered through an Internet protocol network.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products