Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

863 results about "Cable network" patented technology

Broadly speaking, a network cable is a type of cable wiring used in telecommunications that relays data from individual computers to a larger network mainframe. Sometimes these cables are external, and can be used to do things like plug computers into Internet modems or grounded ports.

System and method for automated placement or configuration of equipment for obtaining desired network performance objectives and for security, RF tags, and bandwidth provisioning

A method is presented for determining optimal or preferred configuration settings for wireless or wired network equipment in order to obtain a desirable level of network performance. A site-specific network model is used with adaptive processing to perform efficient design and on-going management of network performance. The invention iteratively determines overall network performance and cost, and further iterates equipment settings, locations and orientations. Real time control is between a site-specific Computer Aided Design (CAD) software application and the physical components of the network allows the invention to display, store, and iteratively adapt any network to constantly varying traffic and interference conditions. Alarms provide rapid adaptation of network parameters, and alerts and preprogrammed network shutdown actions may be taken autonomously. A wireless post-it note device and network allows massive data such as book contents or hard drive memory to be accessed within a room by a wide bandwidth reader device, and this can further be interconnected to the internet or Ethernet backbone in order to provide worldwide access and remote retrieval to wireless post-it devices.

Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PTMP) transmission system architecture

A packet-centric wireless point to multi-point telecommunications system includes: a wireless base station communicating via a packet-centric protocol to a first data network; one or more host workstations communicating via the packet-centric protocol to the first data network; one or more subscriber customer premise equipment (CPE) stations coupled with the wireless base station over a shared bandwidth via the packet-centric protocol over a wireless medium; and one or more subscriber workstations coupled via the packet-centric protocol to each of the subscriber CPE stations over a second network. The packet-centric protocol can be transmission control protocol/internet protocol (TCP/IP). The packet-centric protocol can be a user datagram protocol/internet protocol (UDP/IP). The system can include a resource allocation means for allocating shared bandwidth among the subscriber CPE stations. The resource allocation is performed to optimize end-user quality of service (QoS). The wireless communication medium can include at least one of: a radio frequency (RF) communications medium; a cable communications medium; and a satellite communications medium. The wireless communication medium can further include a telecommunications access method including at least one of: a time division multiple access (TDMA) access method; a time division multiple access/time division duplex (TDMA/TDD) access method; a code division multiple access (CDMA) access method; and a frequency division multiple access (FDMA) access method.
The first data network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN). The second network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN).

Multi-channel support for virtual private networks in a packet to ATM cell cable system

A two-way cable network offering high-speed broadband communications delivered via virtual private networks over a multi-channel shared media system. Bi-directional transmission of packet to ATM cell based communications is established between a head end communication controller and a number of subscriber terminal units, whereby individual cells are prioritized and routed according to a virtual connection. Virtual connections are organized to support multiple virtual private networks in a shared media CATV system. The virtual private network to which a particular STU belongs is user selectable and has the flexibility of handling multi up/downstream channels with different MAC domains. The present invention can also handle non-ATM MAC domains via the same common ATM switch. To overcome the limited number of addresses inherent to common ATM switches, a mapping/remapping function is implemented in the port cards. Furthermore, downstream as well as upstream traffic are filtered at each STU. In one embodiment, information pertaining to downstream traffic is used to implement predictive scheduling in order to improve the timing associated with the request/grant cycle. In another embodiment, a user has the ability to select a quality of service that best suits the needs of the current application. In a further embodiment, the scheduling function is associated with each of the receivers in order to provide improved scalability.

Secure wireless local area network

The secure wireless local area network of the present invention includes a single wired network that supports both wired and wireless devices. The network addresses security concerns by including an authentication server that services a plurality of access points. Each access point includes a first authentication device that generates and transmits a first authentication message to the corresponding wireless device over an air channel. The first authentication message includes encrypted validating information about the access point including an access point key that uniquely identifies the access point. Each wireless device includes a second authentication device. The wireless device receives the first authentication message and determines whether the access point is authorized to connect to the wired network. If the access point is valid, the second authentication device responds to the first authentication message by generating and transmitting a second authentication message to the access point. The second authentication message includes encrypted validating information about the wireless device and operator, e.g., a device key and the operator's logon name and password. The access point determines the authenticity of the wireless device by decrypting the portion of the second authentication message that includes the device key. If the wireless device is valid, the AP opens a control channel with the authentication server. The AP transmits the first and second authentication messages to the authentication server. If the authentication server validates the access point and the operator's logon name and password, it will authorize access to the wired network.

Technique for synchronizing multiple access controllers at the head end of an access network

A technique is described which may be used to synchronize a plurality of different access controllers which control a plurality of distinct ports at the Head End of an access network. In the context of a cable network, the technique of the present invention may be used to synchronize desired upstream and/or downstream channels across different line cards within a Cable Modem Termination System (CMTS). The technique involves utilizing a master time reference device which maintains and updates a current time reference, and periodically distributes synchronization signals to desired line cards in the system in order to synchronize these line cards. In a specific embodiment, the synchronization signals include current timestamp data generated from the master time reference device and distributed to all (or selected) line cards in the system. A slave time reference device on each of the line cards receives the periodic synchronization updates and uses the synchronization data to remain synchronized with the master time reference device. There are also provisions in this protocol to allow for hot insertion and removal of line cards, software reset or loading of the master and/or slave time reference devices, and redundant master time reference devices, including master time reference device fault detection and automatic fail over.

Location-based testing for wireless data communication networks

Apparatus and methods facilitating a distributed approach to performance and functionality testing of location-sensitive wireless data communication systems and equipment are described. A plurality of test units, geographically distributed at arbitrary points in a three-dimensional volume surround the system or equipment under test. Each test unit generates test stimuli and records responses from the device under test, and emulates the effects of changes in spatial location within an actual wireless network environment. A central controller co-ordinates the set of test units to ensure that they act as a logical whole, and enables testing to be performed in a repeatable manner in spite of the variations introduced by the location sensitive characteristics of wireless data communication networks. The central controller also maintains a user interface that provides a unified view of the complete test system, and a unified view of the behavior of the system or equipment under test. For diagnostic purposes, the recorded responses may be regenerated to view any defects as many times as necessary to correct them. Alternatively, each test unit may have either wired network interface units, instead of a wireless interface unit to test systems or equipment forming part of a wired network portion in the wireless data communication system.

Design and control systems, commissioning tools, configuration adapters and method for wireless and wired networks design, installation and automatic formation

Design and control systems, commissioning tools, configuration adapters and a method for wireless and wired networks design, installation and automatic formation, including binding of the networks devices are provided. In the design system a scheme that uniquely identifies each network device by its type and its physical location is created and information for logical binding between the devices is prepared. In the design system is also created a device mapping that maps between the devices on the scheme and their network configuration data such as, radio IDs and startup attribute sets and wired communication link address. The data prepared in the design system is transferred to or accessed by a master controller and dedicated commissioning tools in the control system. According to devices' physical locations, appropriate configuration data is loaded from the commissioning tools into the devices through dedicated configuration adapters. The devices and their configuration adapters not necessarily have to be powered-up during configuration data loading. After power-up, the devices automatically update themselves with the loaded configuration data and the control system may initialize itself and identifies all the devices. The master controller in the control system uses the design system defined binding information and transmits binding commands for creating logical links between the devices and so networks may be automatically formed.

Utility monitoring device, system and method

A monitoring device, system and method is provided for in-home/on-premises monitoring of usage of utilities, such as electricity and other services. The monitoring device receives information from a smart metering system or transceiver, and displays current usage through an illuminated display, which displays a colour indicative of the current cost of consumption, and controls illumination of the display to scan illumination across the display at a traverse rate indicative of a rate of consumption or other metric, the scanning of a pattern of illumination across the display simulating movement or rotation in the display. The display therefore provides a consumer with immediate “at a glance” visual information on current usage. Optionally a digital display screen provides more detailed alphanumeric and graphical information, through a number of selectable display modes. Beneficially one or more devices may be networked, and interface directly or indirectly with a transceiver of a smart metering system, or a retrofit transceiver for a conventional meter. While particularly suited to electricity monitoring, monitoring of other utilities and services may alternatively or additionally be provided. The system may be used with a wired network or wirelessly networked by one of a number of standard wireless and mesh network communication protocols.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products