Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8801results about How to "High bandwidth" patented technology

Multimedia surveillance and monitoring system including network configuration

A comprehensive, wireless multimedia surveillance and monitoring system provides a combination of megapixel digital camera capability with full motion video surveillance with a network, including network components and appliances such as wiring, workstations, and servers with the option of geographical distribution with various wide area carriers. The full service, multi-media surveillance system is capable of a wide range of monitoring techniques utilizing digital network architecture and is adapted for transmitting event data, video and / or image monitoring information, audio signals and other sensor and detector data over significant distances using digital data transmission over a LAN, wireless LAN, Intranet or Internet for automatic assessment and response including dispatch of response personnel. Both wired and wireless appliance and sensor systems may be employed. GPS dispatching is used to locate and alert personnel as well as to indicate the location of an event. Automatic mapping and dispatch permits rapid response. The wireless LAN connectivity permits local distribution of audio, video and image data over a relatively high bandwidth without requirement of a license and without relying on a common carrier and the fees associated therewith. The surveillance system may be interfaced with a WAN (wide area Network) or the Internet for providing a worldwide, low cost surveillance system with virtually unlimited geographic application. Centralized monitoring stations have access to all of the surveillance data from various remote locations via the Internet or the WAN. A server provides a centralized location for data collection, alarm detection and processing, access control, dispatch processing, logging functions and other specialized functions. The server may be inserted virtually anywhere in the Intranet / Internet network. The topology of the network will be established by the geographic situation of the installation. Appropriate firewalls may be set up as desired. The server based system permits a security provider to have access to the appliance and sensor and surveillance data or to configure or reconfigure the system for any station on the network.

Channel equalization system and method

InactiveUS20030016770A1Increase high performance and data rate capacityLow costMultiple-port networksChannel dividing arrangementsData transmissionTTEthernet
A system and method for delivering increases speed, security, and intelligence to wireline and wireless systems. The present invention includes a new generation Fast Circuit Switch (packet/circuit) Communication processors and platform which enables a new Internet Exchange Networking Processor Architecture at the edge and core of every communication system, for next generation Web Operating System or Environment (WOE) to operate on with emphasis of a non-local processor or networking processor with remote web computing capabilities. A Unified Network Communication & Processor System or UniNet is a New generation network architecture of packet/circuit communication processors or Internet networking processor, that increases speeds over any communication channels and topologies, synchronizing, enabling, improving, controlling and securing all of the data transmission of web applications over existing wireline and wireless infrastructure while providing seamless integration to the legacy telecom & data corn backbone. The present invention is capable of operating on any topology with distributed intelligence and data switching/routing, which is located at the edge. This method not only alleviates the ever increasing data processing bottleneck which is currently done by the data communication and telecom switch and routers, but it also enables new and next generation Internet Processor architecture. The UniNet is also a flexible solution for the novel concept that the capability of a network interface should depend on the level of service assigned to a service access point, not the capacity of the total network, such as transaction services with a short burst of messages with short access delay. The present invention increases channel capacity by using a parallel or multi-channel structure in such wireless and wireline at the edge or the core of. This new architecture of the present invention uses parallel bitstreams in a flexible way and distributed switching/routing technique, is not only to avoid the potential bottlenet of centralized switches, but also to increase speed with intelligence that is seamlessly integrating into the Fiber Optic Backbone such as WDM and SONET of the MAN/WAN network with a Real-time guarantees, different types of traffic (such as Stringent synchronous, isochronous, and asynchronous data messages) with different demands, and privacy & security of multi access and integrated services environment.
Owner:B C LEOW

Method and system for providing site independent real-time multimedia transport over packet-switched networks

Embodiments of the invention enable minimum latency site independent real-time video transport over packet switched networks. Some examples of real-time video transport are video conferencing and real-time or live video streaming. In one embodiment of the invention, a network node transmits live or real-tine audio and video signals, encapsulated as Internet Protocol (IP) data packets, to one or more nodes on the Internet or other IP network. One embodiment of the invention enables a user to move to different nodes or move nodes to different locations thereby providing site independence. Site independence is achieved by measuring and accounting for the jitter and delay between a transmitter and receiver based on the particular path between the transmitter and receiver independent of site location. The transmitter inserts timestamps and sequence numbers into packets and then transmits them. A receiver uses these timestamps to recover the transmitter's clock. The receiver stores the packets in a buffer that orders them by sequence number. The packets stay in the buffer for a fixed latency to compensate for possible network jitter and/or packet reordering. The combination of timestamp packet-processing, remote clock recovery and synchronization, fixed-latency receiver buffering, and error correction mechanisms help to preserve the quality of the received video, despite the significant network impairments generally encountered throughout the Internet and wireless networks.

Selective lossless, lossy, or no compression of data based on address range, data type, and/or requesting agent

An integrated memory controller (IMC) including MemoryF/X Technology which includes data compression and decompression engines for improved performance. The memory controller (IMC) of the present invention preferably selectively uses a combination of lossless, lossy, and no compression modes. Data transfers to and from the integrated memory controller of the present invention can thus be in a plurality of formats, these being compressed or normal (non-compressed), compressed lossy or lossless, or compressed with a combination of lossy and lossless. The invention also indicates preferred methods for specific compression and decompression of particular data formats such as digital video, 3D textures and image data using a combination of novel lossy and lossless compression algorithms in block or span addressable formats. To improve latency and reduce performance degradations normally associated with compression and decompression techniques, the MemoryF/X Technology encompasses multiple novel techniques such as: 1) parallel lossless compression/decompression; 2) selectable compression modes such as lossless, lossy or no compression; 3) priority compression mode; 4) data cache techniques; 5) variable compression block sizes; 6) compression reordering; and 7) unique address translation, attribute, and address caches. The parallel compression and decompression algorithm allows high-speed parallel compression and high speed parallel decompression operation. The IMC also preferably uses a special memory allocation and directory technique for reduction of table size and low latency operation. The integrated data compression and decompression capabilities of the IMC remove system bottle-necks and increase performance. This allows lower cost systems due to smaller data storage, reduced bandwidth requirements, reduced power and noise.

Communication system architecture and operating methodology providing a virtual neighborhood network

InactiveUS7142503B1Overcome bandwidth limitationIncreased peak bandwidth capacityError preventionFrequency-division multiplex detailsEnd-to-end encryptionTransceiver
A communication system (10) supports the provision of a plurality of dedicated communication resources (50–64), such as copper drops, RF links and optical fibers, to dedicated home-gateway devices (44–48) or distribution points (124). The communication resources (50–64) support broadband interconnection (104) between the dedicated home-gateway devices (44–48) or distribution points (124) and an access multiplexor (30) in a network (12). Each gateway device (44–48) or distribution point (124) generally includes a local RF transceiver (84) and associated control logic (80–82) that allows local communication (86) between gateway devices (44–48) and hence statistically multiplexed access (60–64, 89) to multiple communication resources, thereby providing increased bandwidth in uplink and/or downlink directions. With the control logic (80) operable to provide a routing and prioritisation/arbitration function, each gateway (44–48) is able to selectively engage use of supplemental, non-reserved communication resources usually associated with a dedicated ono-to-one connection between the access network (12) and at least one secondary gateway. Physical layer access to information routed via a secondary gateway within a virtual neighborhood network (90–92) comprising several gateways is restricted through an end-to-end encryption algorithm between an originating gateway and, at least, the access multilpexor (30).

High speed access system over copper cable plant

A system for transporting a high speed data stream over a plurality of relatively low bandwidth unshielded twisted copper pairs within the local loop plant or in any environment having a plurality of copper lines, such as on campuses, within large buildings, etc. The copper twisted pairs are transformed from a plurality of low bandwidth, low reliability links into a high reliability, very high bandwidth long range communication channel utilizing optimized xDSL transmission technologies over the plurality of copper pairs. A transmit data processor perform scrambling, FEC encoding and interleaving on the data before it is divided and dispatched to the plurality of modem elements for transmission over the local loop plant, either bidirectionally or unidirectionally. On the receiving side, the individual data streams are collected, aggregated and a receive data processor performs de-interleaving, FEC decoding and de-interleaving, resulting in the high speed data stream originally transmitted. The system also includes means for increasing the performance of the xDSL modem elements including crosstalk cancellation, power and PSD control, data rate control and optimal routing of the transmitted signals within the twisted pair binders. Network elements located remotely on the other side of the plurality of copper pairs are provided electrical power. In addition, the system optionally multiplexes a plurality of low bandwidth telephony services over the high speed link using either TDM or FDM techniques.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products