Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

7162 results about "Memory controller" patented technology

The memory controller is a digital circuit that manages the flow of data going to and from the computer's main memory. A memory controller can be a separate chip or integrated into another chip, such as being placed on the same die or as an integral part of a microprocessor; in the latter case, it is usually called an integrated memory controller (IMC). A memory controller is sometimes also called a memory chip controller (MCC) or a memory controller unit (MCU).

Hardware-based translating virtualization switch

Placing virtualization agents in the switches which comprise the SAN fabric. Higher level virtualization management functions are provided in an external management server. Conventional HBAs can be utilized in the hosts and storage units. In a first embodiment, a series of HBAs are provided in the switch unit. The HBAs connect to bridge chips and memory controllers to place the frame information in dedicated memory. Routine translation of known destinations is done by the HBA, based on a virtualization table provided by a virtualization CPU. If a frame is not in the table, it is provided to the dedicated RAM. Analysis and manipulation of the frame headers is then done by the CPU, with a new entry being made in the HBA table and the modified frames then redirected by the HBA into the fabric. This can be done in either a standalone switch environment or in combination with other switching components located in a director level switch. In an alternative embodiment, specialized hardware scans incoming frames and detects the virtualized frames which need to be redirected. The redirection is then handled by translation of the frame header information by hardware table-based logic and the translated frames are then returned to the fabric. Handling of frames not in the table and setup of hardware tables is done by an onboard CPU.
Owner:AVAGO TECH INT SALES PTE LTD

Controller for Non-Volatile Memories and Methods of Operating the Memory Controller

A non-volatile memory system (3) is proposed consisting of a first non-volatile flash memory (5) having a plurality of blocks, each block having a plurality of pages, each block being erasable and each page being programmable, and a second non-volatile random access memory (23) having a plurality of randomly accessible bytes. The second non-volatile memory (23) stores data for mapping logical blocks to physical blocks and status information of logical blocks. Each logical block has an associated physical page pointer stored in the second non-volatile memory (23) that identifies the next free physical page of the mapped physical block to be written. The page pointer is incremented after every page write to the physical block, allowing all physical pages to be fully utilized for page writes. Furthermore, a method of writing and reading data is disclosed whereby the most recently written physical page associated with a logical address is identifiable by the memory system without programming flags into superseded pages, or recording time stamp values in any physical page or block of the first non-volatile memory (5). Furthermore, a method is provided for a logical block to be mapped to two physical blocks instead of one to provide additional space for page writes, resulting in reduction in page copy operations, thereby increasing the performance of the system.
Owner:CHANG CHEE KENG

Method and system for power management including device controller-based device use evaluation and power-state control

A method and system for power management including device controller-based device use evaluation and power-state control provides improved performance in a power-managed processing system. Per-device usage information is measured and evaluated during process execution and is retrieved from the device controller upon a context switch, so that upon reactivation of the process, the previous usage evaluation state can be restored. The device controller can then provide for per-process control of attached device power management states without intervention by the processor and without losing the historical evaluation state when a process is switched out. The device controller can control power-saving states of connected devices in conformity with the usage evaluation without processor intervention and across multiple process execution slices. The device controller may be a memory controller and the controlled devices memory modules or banks within modules if individual banks can be power-managed. Local thresholds provide the decision-making mechanism for each controlled device. The thresholds may be history-based, fixed or adaptive and are generally set initially by the operating system and may be updated by the memory controller adaptively or using historical collected usage evaluation counts or alternatively by the operating system via a system processor.
Owner:IBM CORP

Managing a codec engine for memory compression/decompression operations using a data movement engine

A system and method for managing a functional unit in a system using a data movement engine. An exemplary system may comprise a CPU coupled to a memory controller. The memory controller may include or couple to a data movement engine (DME). The memory controller may in turn couple to a system memory or other device which includes at least one functional unit. The DME may operate to transfer data to/from the system memory and/or the functional unit, as described herein. In one embodiment, the DME may also include multiple DME channels or multiple DME contexts. The DME may operate to direct the functional unit to perform operations on data in the system memory. For example, the DME may read source data from the system memory, the DME may then write the source data to the functional unit, the functional unit may operate on the data to produce modified data, the DME may then read the modified data from the functional unit, and the DME may then write the modified data to a destination in the system memory. Thus the DME may direct the functional unit to perform an operation on data in system memory using four data movement operations. The DME may also perform various other data movement operations in the computer system, e.g., data movement operations that are not involved with operation of the functional unit.
Owner:INTELLECTUAL VENTURES I LLC

Video, audio and graphics decode, composite and display system

A video, audio and graphics system uses multiple transport processors to receive in-band and out-of-band MPEG Transport streams, to perform PID and section filtering as well as DVB and DES decryption and to de-multiplex them. The system processes the PES into digital audio, MPEG video and message data. The system is capable of decoding multiple MPEG SLICEs concurrently. Graphics windows are blended in parallel, and blended with video using alpha blending. During graphics processing, a single-port SRAM is used equivalently as a dual-port SRAM. The video may include both analog video, e.g., NTSC / PAL / SECAM / S-video, and digital video, e.g., MPEG-2 video in SDTV or HDTV format. The system has a reduced memory mode in which video images are reduced in half in horizontal direction only during decoding. The system is capable of receiving and processing digital audio signals such as MPEG Layer 1 and Layer 2 audio and Dolby AC-3 audio, as well as PCM audio signals. The system includes a memory controller. The system includes a system bridge controller to interface a CPU with devices internal to the system as well as peripheral devices including PCI devices and I / O devices such as RAM, ROM and flash memory devices. The system is capable of displaying video and graphics in both the high definition (HD) mode and the standard definition (SD) mode. The system may output an HDTV video while converting the HDTV video and providing as another output having an SDTV format or another HDTV format.
Owner:AVAGO TECH INT SALES PTE LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products