Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2848 results about "Memory management" patented technology

Memory management is a form of resource management applied to computer memory. The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed. This is critical to any advanced computer system where more than a single process might be underway at any time.

Multiple network protocol encoder/decoder and data processor

A multiple network protocol encoder/decoder comprising a network protocol layer, data handler, O.S. State machine, and memory manager state machines implemented at a hardware gate level. Network packets are received from a physical transport level mechanism by the network protocol layer state machine which decodes network protocols such as TCP, IP, User Datagram Protocol (UDP), PPP, and Raw Socket concurrently as each byte is received. Each protocol handler parses and strips header information immediately from the packet, requiring no intermediate memory. The resulting data are passed to the data handler which consists of data state machines that decode data formats such as email, graphics, Hypertext Transfer Protocol (HTTP), Java, and Hypertext Markup Language (HTML). Each data state machine reacts accordingly to the pertinent data, and any data that are required by more than one data state machine is provided to each state machine concurrently, and any data required more than once by a specific data state machine, are placed in a specific memory location with a pointer designating such data (thereby ensuring minimal memory usage). Resulting display data are immediately passed to a display controller. Any outgoing network packets are created by the data state machines and passed through the network protocol state machine which adds header information and forwards the resulting network packet via a transport level mechanism.
Owner:NVIDIA CORP

Taint tracking mechanism for computer security

Mechanisms have been developed for securing computational systems against certain forms of attack. In particular, it has been discovered that, by maintaining and propagating taint status for memory locations in correspondence with information flows of instructions executed by a computing system, it is possible to provide a security response if and when a control transfer (or other restricted use) is attempted based on tainted data. In some embodiments, memory management facilities and related exception handlers can be exploited to facilitate taint status propagation and / or security responses. Taint tracking through registers of a processor (or through other storage for which access is not conveniently mediated using a memory management facility) may be provided using an instrumented execution mode of operation. For example, the instrumented mode may be triggered by an attempt to propagate tainted information to a register. In some embodiments, an instrumented mode of operation may be more generally employed. For example, data received from an untrusted source or via an untrusted path is often transferred into a memory buffer for processing by a particular service, routine, process, thread or other computational unit. Code that implements the computational unit may be selectively executed in an instrumented mode that facilitates taint tracking. In general, instrumented execution modes may be supported using a variety of techniques including a binary translation (or rewriting) mode, just-in-time (JIT) compilation / re-compilation, interpreted mode execution, etc. Using an instrumented execution mode and / or exception handler techniques, modifications to CPU hardware can be avoided if desirable.
Owner:VMWARE INC

Apparatus and method for managing access to a memory

The present invention provides a data processing apparatus and method for managing access to a memory within the data processing apparatus. The data processing apparatus comprises a processor operable in a plurality of modes and a plurality of domains, said plurality of domains comprising a secure domain and a non-secure domain, said plurality of modes including at least one non-secure mode being a mode in the non-secure domain and at least one secure mode being a mode in the secure domain, said processor being operable such that when executing a program in a secure mode said program has access to secure data which is not accessible when said processor is operating in a non-secure mode. Further, a memory is provided for storing data required by the processor, and consists of secure memory for storing secure data and non-secure memory for storing non-secure data. The memory further contains a non-secure table and a secure table, the non-secure table being within the non-secure memory and arranged to contain for each of a number of first memory regions an associated descriptor, and the secure table being within the secure memory and arranged to contain for each of a number of second memory regions an associated descriptor. When access to an item of data in the memory is required by the processor, the processor issues a memory access request, and a memory management unit is provided to perform one or more predetermined access control functions to control issuance of the memory access request to the memory. The memory management unit comprises an internal storage unit operable to store descriptors retrieved by the memory management unit from either the non-secure table or the secure table, and in accordance with the present invention the internal storage unit comprises a flag associated with each descriptor stored within the internal storage unit to identify whether that descriptor is from the non-secure table or the secure table. By this approach, when the processor is operating in a non-secure mode, the memory management unit is operable to perform the predetermined access control functions for the memory access request with reference to access control information derived from the descriptors in the internal storage unit retrieved from the non-secure table. In contrast, when the processor is operating in a secure mode, the memory management unit is operable to perform the predetermined access control functions for the memory access request with reference to access control information derived from the descriptors in the internal storage unit retrieved from the secure table. This approach enables different descriptors to be used for the control of accesses to memory in either the secure domain or the non-secure domain, whilst enabling such different descriptors to co-exist within the memory management unit's internal storage unit, thereby avoiding the requirement to flush the contents of such an internal storage unit when the operation of the processor changes from the secure domain to the non-secure domain, or vice versa.
Owner:ARM LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products