Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1488 results about "Data link layer" patented technology

The data layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between adjacent network nodes in a wide area network (WAN) or between nodes on the same local area network (LAN) segment. The data link layer provides the functional and procedural means to transfer data between network entities and might provide the means to detect and possibly correct errors that may occur in the physical layer.

Method for controlling errors in link layer in wideband wireless communication and computer readable media therefor

A method for controlling errors in a wireless link layer using a simultaneous multiple copy scheme and an adaptive forward error correction (FEC) scheme in a wideband wireless communication is provided. The method for controlling errors in a link layer in wideband wireless communication using an automatic repeat request (ARQ) scheme, in which a wideband wireless channel is used for communication between a first node and a second node, includes the steps of (a) estimating the error ratio of a forward (a direction in which a cell is transmitted from the first node to the second node) channel using the state of a backward (a direction in which a cell is transmitted from the second node to the first node) channel, and transmitting a cell, in which a forward error correction (FEC) code having an encoding ratio that varies depending on the estimated error ratio is included in a protocol data unit (PDU) of a wireless link layer, through the forward channel and (b) re-transmitting the copy of a cell transmitted in the step (a), when feedback information that indicates that an error exists in the cell transmitted in the step (a) is received through the backward channel. It is possible to reduce the number of times of re-transmission by improving the probability of correcting forward errors using more error controlling bits as the state of the channel is worse and to minimize the waste of resources using less error controlling bits as the state of the channel is better, to thus obtain the optimal performance and guarantee the minimum delay time.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and system for automating node configuration to facilitate peer-to-peer communication

A method and system for configuring one or more prospective-participant nodes as participant nodes so as to enable the prospective-participant nodes to engage in a peer-to-peer communication is provided. In one exemplary embodiment, the method and system may be embodied as a common application that includes logic, in hardware or software form, for carrying out one or more of the functions for configuring one or more prospective-participant nodes as a participant node in a peer-to-peer network. In carrying out these functions, one of the participant nodes discovers its network connection settings, and based on these settings, generates participant-node-configuration data that includes one or more network connection settings that define how to address the prospective-participant node as a participant node. When desiring to join the peer-to-peer network, the prospective-participant node and the participant node may establish a point-to-point communication link by engaging in a discovery process using so as to establish a data-link layer connection. After completing negotiation of the data-link-layer connection, the prospective-participant node and the participant node may communicate over the data-link-layer connection. The prospective-participant node may send to the participant node a request for network access. Responsively, the participant node sends to the prospective-participant node the participant-node-configuration data over the point-to-point connection. And the prospective-participant node configures itself using the participant-node-configuration data so as to become a participant node.
Owner:SPRINT SPECTRUM LLC

System and method for securely providing a configuration file over and open network

A method for securely provisioning a device for operation within a service provider infrastructure over an open network comprises the device establishing physical and data link layer network connections for communication on at least a subnet of the open network and obtaining a network configuration data such as an IP address and a subnet mask from a provisioning server that responds to a network configuration broadcast request. A device establishes a secure hypertext transport protocol connection to a first provisioning server that corresponds to one of: i) and IP address and port number; and ii) a fully qualified domain name stored in a non-volatile memory of the device. After mutual authentication, the first provisioning server provides at least one of: i) a configuration file; and ii) identification of a second provisioning server and a cipher key through the secure connection. If the first provisioning server provided identification of a second provisioning server, the device establishes a transport connection to the identified second provisioning server. The second provisioning server provides an encrypted file which, when decrypted using the cipher key yields the configuration information needed by the device for operation with the service provider infrastructure.
Owner:INOMEDIA

Power mesh for multiple frequency operation of semiconductor products

The design of integrated circuits, i.e., semiconductor products, is made easier with a semiconductor platform having versatile power mesh that is capable of supporting simultaneous operations having different frequencies on the semiconductor product; e.g., higher frequency operations may be embedded as diffused blocks within the lower layers or may be programmed from a configurable transistor fabric above the diffused layers. Preferably the power mesh is located above the layers having the operations requiring the different frequencies, and may be fixed in an application set given to a chip designer or may be configurable by the designer her/himself. For example, to support high speed communications adjacent an embedded high speed data transceiver, the transistor fabric may be programmed as a data link layer having higher performance requirements than the rest of the integrated circuit. The data link layer may be connected to one of the localized grids of the versatile power mesh which may have an increased density and/or wider strap width of a power/ground grid. Additional decoupling capacitance can be embedded in the lower layers of the semiconductor product and/or can be programmed from the configurable transistors fabric.
Owner:AVAGO TECH INT SALES PTE LTD

Method for performing inter system handovers in mobile telecommunication system

An inter system handovers in a mobile telecommunication system is performed when a dual mode user equipment (UE) covered by both GSM/GPRS network and UMTS network connects a dedicated channel and sets up a call in a BSS region where the GSM/GPRS provides coverage, and then moves to a UTRAN (UMTS Terrestrial Radio Access Network) where the UMTS provides coverage, wherein the method includes the steps of: if the dual mode UE receives an inter system handover command, i.e. from the BSS to the UTRAN, requesting GSM/GPRS data link layer to suspend a GSM/GPRS data link by a sublayer RR of GSM/GPRS network layer in the UE, requesting a GSM/GPRS physical layer to release a physical channel of the GSM/GPRS, and sending the inter system handover command to the UTRAN for authorizing a sublayer RRC of UMTS network layer in the UE to continue a call; requesting, at the RRC in the UE, a UMTS physical channel to be configured as a UMTS physical channel, and monitoring if the UMTS physical layer succeeds to have the configuration of the UMTS physical channel as requested; if the UMTS physical layer succeeds to have the configuration of the UMTS physical channel, requesting, at the RRC in the UE, a UMTS data link layer to configure a UMTS data link, and conveying information to the UTRAN through a UMTS channel that the handover between systems from the BSS to the UTRAN has been successfully performed; and sending, at the RRC, a GSM/GPRS resource release message to RR/GRR, thereby resetting the GSM/GPRS physical layer and the GSM/GPRS data link layer.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products