Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

6557results about "Networks interconnection" patented technology

Method and apparatus for providing guaranteed quality/class of service within and across networks using existing reservation protocols and frame formats

A method and apparatus provide reserved bandwidth and QOS/COS virtual circuit connections in a network using both conventional and novel reservation protocols and frame formats. An apparatus according to the invention includes an enterprise control point that communicates with switches via a reserved signaling channel. The switches have been upgraded or replaced to include enhanced functionality. The enhanced switches detect packets that include requests for reserved connections according to existing reservation protocols such as RSVP and IEEE 802.1P/Q. Such detected packets are forwarded to the enterprise control point for processing via a reserved signaling channel. The enterprise control point identifies a path within the network that can satisfy the requested QOS/COS and reserves the requested resources all along the path from beginning to end. A method according to the invention includes detecting packets that include requests for reserved connections according to existing reservation protocols such as RSVP and IEEE 802.1P/Q, forwarding detected packets to an enterprise control point for processing via a reserved signaling channel, identifying a path within the network that can satisfy the requested QOS/COS and reserving the requested resources all along the path from beginning to end.

System and method for distributing multicasts in virtual local area networks

The invention relates to a system and method for efficiently distributing multicast messages within computer networks configured to have one or more virtual local area network (VLAN) domains. A multicast network device (MND), having a plurality of interfaces, includes a multicast controller for efficiently distributing multicast messages among subscribing entities associated with various VLAN domains. The multicast controller, which is in communicating relationship with the interfaces, includes a VLAN assignment engine for assigning responsibility for the VLAN domains to the extent there are multiple MNDs. The multicast controller also accesses a multicast tag source to establish a plurality of novel VLAN tags for efficiently distributing multicast messages, including a sub-regional Multicast VLAN Identifier (MVLAN-ID) that encompasses all of the VLAN domains for which the respective MND is responsible, and one or more color-limited MVLAN-IDs that encompass all of the VLAN domains for which the MND is responsible except for one. The multicast controller then tags multicast messages with its sub-regional or a color-limited MVLAN-ID depending on whether the message is considered internal or external by the respective MND. The tagged messages are then forwarded for distribution to the subscribers associated with the various VLAN domains.

Multi-channel support for virtual private networks in a packet to ATM cell cable system

A two-way cable network offering high-speed broadband communications delivered via virtual private networks over a multi-channel shared media system. Bi-directional transmission of packet to ATM cell based communications is established between a head end communication controller and a number of subscriber terminal units, whereby individual cells are prioritized and routed according to a virtual connection. Virtual connections are organized to support multiple virtual private networks in a shared media CATV system. The virtual private network to which a particular STU belongs is user selectable and has the flexibility of handling multi up/downstream channels with different MAC domains. The present invention can also handle non-ATM MAC domains via the same common ATM switch. To overcome the limited number of addresses inherent to common ATM switches, a mapping/remapping function is implemented in the port cards. Furthermore, downstream as well as upstream traffic are filtered at each STU. In one embodiment, information pertaining to downstream traffic is used to implement predictive scheduling in order to improve the timing associated with the request/grant cycle. In another embodiment, a user has the ability to select a quality of service that best suits the needs of the current application. In a further embodiment, the scheduling function is associated with each of the receivers in order to provide improved scalability.

Mobile virtual LAN

InactiveUS6847620B1Not burdened with associated computational overheadNetwork topologiesWireless network protocolsCommunications systemVirtual LAN
A communication system in which multiple protocols and proxy services are executed by an access point. In one embodiment of the invention, GVRP and GMRP registrations are combined in a single packet when a wireless device roams to a different VLAN. In addition, outbound GVRP and GMRP multicast messages are handled by an access point (also referred to as a GVRP and GMRP “gateway”) such that the wireless device is not burdened with the associated computational overhead. In a further embodiment, a wireless device may dynamically switch between a VLAN-aware state and a VLAN-unaware state depending on the nature of a detected access point. For example, if a relevant access point supports GVRP, the wireless device may operate as a VLAN terminal. If a wireless device is not attached to an access point with a matching VLAN ID, the wireless device sends and receives VLAN tagged frames. If a wireless device configured with a VLAN ID is attached to an access point with a matching VLAN ID, or if the wireless device is attached to a non-VLAN access point, then the wireless device may send and receive raw/untagged frames. In addition to the gateways described below, the ability of a wireless device to detect when it can send untagged frames is considered novel. In another embodiment of the invention, a special ID that is different than the native VLAN ID for a switch port is used for VLAN-unaware devices. This allows such devices that do not issue tagged frames to belong to a single VLAN ID.

Path setting method, and network, relay station and parent station employing the path setting method

The present invention provides a path setting method for automatically setting network paths. The path setting method for generating paths in a network including a plurality of relay stations and a parent station which are connected with each other through a transmission line, comprises the steps of allowing each of the parent station and the plurality of relay stations to transmit basic information including its own identifier and its own path setting status, by means of a repetitive broadcast, allowing the relay station receiving the basic information to recognize the parent station or another relay station having a temporary path set thereto and transmit its own receiving-environment table including a transmission quality on the transmission line to the recognized station, allowing the another relay station receiving the receiving-environment table to forward it to the parent station through the use of the temporary path so as to notify the receiving-environment table to the parent station, and allowing the parent station receiving the forwarded receiving-environment table to set a temporary path to the relay station which has transmitted the receiving-environment table. In this manner, the parent station collects the transmission qualities on the inter-station transmission lines stepwise in order of the closest relay station to the farthest relay station to automatically set the paths.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products