Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1599 results about "Label switching" patented technology

Label switching is a technique of network relaying to overcome the problems perceived by traditional IP-table switching (also known as traditional layer 3 hop-by-hop routing). Here, the switching of network packets occurs at a lower level, namely the data link layer rather than the traditional network layer.

Router, frame forwarding method, and lower layer frame virtual forwarding system

In an MPLS network, multicast, broadcast and address learning belonging to the layer 2 functions are realized. An ingress router comprises a frame receiving unit, a determining unit, a first frame transmitting unit, a physical address table for multicast, a label switching unit, a tunnel label table, a VCID giving unit, a L2 header creating unit and a second frame transmitting unit. The load on the network is suppressed, the band is efficiently used, and wasteful frame duplication and frame forwarding between edge routers are avoided.
Owner:FUJITSU LTD

Scalable protection mechanism for hierarchical multicast service in ring based networks

A novel fast and scalable protection mechanism for protecting hierarchical multicast service in ring based networks. The mechanism of the present invention is especially suitable for use in Multi-Protocol Label Switching (MPLS) ring based networks such as Metro Ethernet Networks (MENs). The mechanism provides fast protection for MPLS based point-to-multipoint (P2MP) Label Switched Paths (LSPs) in a scalable manner. Each multicast connection on each ring in the network is split into two sub-LSPs: a primary P2MP sub-LSP originating on a primary node and a secondary P2MP sub-LSP originating on a secondary node traveling opposite to the primary path. For each node to be protected, a point-to-point protection tunnel is provisioned from that node to a secondary node that forwards the packets to the secondary path on all child rings connected to that parent ring through the protected node and that are provisioned to receive the specific multicast connection. In the event of a failure, all the multicast traffic on that ring is directed through the protection tunnel to the secondary node. Upon exiting the protection tunnel, the packets are forwarded to the secondary LSP on the child rings for which this node is the secondary node and also continue along the primary LSP on the parent ring and along all child rings for which this node is the primary node.
Owner:NOKIA SIEMENS NETWORKS ETHERNET SOLUTIONS +1

System and method for protecting against failure of a TE-LSP tail-end node

A technique protects against failure of a tail-end node of a Traffic Engineering (TE) Label Switched Path (LSP) in a computer network. According to the protection technique, a node along the TE-LSP that is immediately upstream to the protected tail-end node and that is configured to protect the tail-end node (i.e., the “point of local repair” or PLR) learns reachable address prefixes (i.e., “protected prefixes”) of next-hop routers from the tail-end node (i.e., “next-next-hops,” NNHOPs to the protected prefixes from the PLR). The PLR creates a backup tunnel to each NNHOP that excludes the tail-end node, and associates each backup tunnel with one or more protected prefixes accordingly. When the tail-end node fails, Fast Reroute is triggered, and the protected prefix traffic (from the TE-LSP) is rerouted by the PLR onto an appropriate backup tunnel to a corresponding NNHOP. Notably, the PLR performs a penultimate hop popping (PHP) operation prior to forwarding the traffic along the backup tunnel(s).
Owner:CISCO TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products