Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

521 results about "Maximum rate" patented technology

Method and apparatus including altimeter and accelerometers for determining work performed by an individual

Method and calculations determine an individual's, or several individuals' simultaneous rates of oxygen consumption, maximum rates of oxygen consumption, heart rates, calorie expenditures, and METS (multiples of metabolic resting rate) in order to determine the amounts of work that is performed by the individual's body. A heart monitor measures the heart rate, and an accelerometer measures the acceleration of the body along one or more axes. An altimeter measures change in altitude, a glucose monitor measures glucose in tissue and blood, and thermometers, thermistors, or thermocouples measure body temperature. Data including body fat and blood pressure measurements are stored locally and transferred to a processor for calculation of the rate of physiological energy expenditure. Certain cardiovascular parameters are mathematically determined. Comparison of each axis response to the individual's moment can be used to identify the type of activity performed and the information may be used to accurately calculate total energy expenditure for each physical activity. Energy expenditure may be calculated by assigning a separate proportionality coefficient to each axis and tabulating the resulting filtered dynamic acceleration over time, or by comparison with previously predetermined expenditures for each activity type. A comparison of total energy expenditure from the current activity is compared with expenditure from a previous activity, or with a baseline expenditure rate to assess the level of current expenditure. A measure of the individual's cardio-vascular health may be obtained by monitoring the heart's responses to various types of activity and to total energy expended.
Owner:TELECOM MEDICAL

Mechanical torque amplifier

A power tong system is used to make up and break out threaded pipe connections. Rotary power tongs are connected to an integral backup tong through an extendable hydraulic cylinder and rod. A brake is secured to the rotary tong to selectively hold the pipe stationary relative to the rotary tong. When rotation of the pipe by the rotary tong ceases, the brake is applied, and the cylinder and rod are actuated to angularly displace the power tongs and the backup tong to apply a torque force to the pipe connection disposed between the power tongs and the backup. A resulting torque force is obtained that is greater than the maximum torque that can be exerted by the rotary tong acting alone. The system may also be deployed to apply and hold precise torque forces on the pipe connections. When used to obtain a makeup torque below the maximum rated rotary tong output, the rotary tong is regulated to limit its torque output. When the limited torque is reached, the brake is applied and the cylinder and rod are actuated to apply a smooth, closely controlled increase in torque to the connection. The final torque level may be held constant for a desired length of time. In both the high and low torque applications, the brake prevents the rotary tong from being turned backwardly by the increased torque force applied by actuation of the rod and cylinder assembly. Operation of the system may be manually or automatically controlled.
Owner:TESCO HLDG I

Dynamic reverse link rate limit algorithm for high data rate system

A method for determining the reverse link data Rate Limit for mobile stations active on the reverse link of a High Data Rate system is disclosed. In the ideal case, the Rate Limit is based on only the number of mobile stations located in a common sector that are actually active on the reverse link. Currently, the Rate Limit is determined from the total number of mobile stations in a common sector where the total includes mobiles that are transmitting and receiving. Thus, the current method includes mobile stations that are active on the forward link and may not be active on the reverse link. In this invention, a more optimum method of estimating the reverse link loading is obtained from calculations which includes only the mobile stations which are active on the reverse link. An estimate of the reverse link loading of the mobile stations in a common cell is obtained by adding together the data rates of the data sent from each mobile in a common sector during a common frame. This aggregate rate of data during the frame is filtered to minimize irregularities by using the moving average of an infinite impulse response filter and then normalized. The normalized result is a percentage of the maximum achievable aggregate reverse link rate. The final result is compared with a set of threshold values to obtain the maximum Rate Limit that is then set for each mobile station.
Owner:ALCATEL-LUCENT USA INC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products