Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2244results about "Capacitance measurements" patented technology

Two Dimensional Position Sensor

A two-dimensional position sensor comprising a substrate with a sensitive area defined by a pattern of electrodes including electrodes for determining x-position and electrodes for determining y-position. The x-electrodes and y-electrodes generally extend in the x-direction and are interleaved in the y-direction. The x-electrodes comprise at least first, second and third groups of elements shaped such that adjacent ones of the elements of the different x-electrode groups co-extend in the x-direction so that the x-electrodes provide ratiometric capacitive signals, thereby providing quasi-continuous x-position sensing across the sensitive area. In addition, the y-electrodes may be resistively connected or arranged in ratiometric pairs to provide quasi-continuous y-position sensing. Alternatively, the x-electrode groups may be interdigitated to form pairs of x-adjacent blocks of differing area to provide stepwise x-position sensing in combination with stepwise y-position sensing provided by the y-electrodes.
Owner:NEODRON LTD

Capacitive field sensor with sigma-delta modulator

A capacitive sensor includes a switching capacitor circuit, a comparator, and a charge dissipation circuit. The switching capacitor circuit reciprocally couples a sensing capacitor in series with a modulation capacitor during a first switching phase and discharges the sensing capacitor during a second switching phase. The comparator is coupled to compare a voltage potential on the modulation capacitor to a reference and to generate a modulation signal in response. The charge dissipation circuit is coupled to the modulation capacitor to selectively discharge the modulation capacitor in response to the modulation signal.
Owner:CYPRESS SEMICON CORP

Passenger occupancy identification system

A seat for a passenger vehicle is provided that comprises a first sensor for detecting the presence or absence of an occupant in the seat and a second sensor for validating the seat occupancy. The seat further comprises a transmitter for transmitting a signal indicative of valid occupancy of the seat. The first sensor may be a non-contact, capacitive sensor and the second sensor may comprise a near-field communication device for receiving a seat validation code. A seat validation system may be established on a passenger vehicle such as a train, wherein a central controller may report on seat occupancy status for the vehicle.
Owner:TRAINFX

Biosensor apparatus and method with sample type and volume detection

A biosensor apparatus and method with sample type and cell volume detection. The apparatus includes a sine wave generator to apply an AC signal to a biosensor cell containing a sample, a current-to-voltage converter, a phase shifter, a square wave generator, a synchronous demodulator, and a low pass filter which yields a signal proportional to the effective capacitance across the biosensor cell, which is proportional to the volume of the sample. In addition, the current-to-voltage converter yields a signal indicative of the type of sample contained within the biosensor cell. The method includes applying a sine wave to the biosensor cell, shifting the phase of the resultant signal, generating a square wave synchronous with the sine wave, demodulating the resultant signal with the square wave, and filtering the demodulated signal to produce a signal proportional to the effective capacitance across the biosensor cell. The biosensor apparatus and method are capable of determining sample type and measuring glucose levels over a wide range of sample volumes.
Owner:LIFESCAN IP HLDG LLC

Touch screen sensor having varying sheet resistance

A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.
Owner:3M INNOVATIVE PROPERTIES CO

System and Method for Detecting Locations of Touches on a Touch Sensor

A projected capacitive touch sensor system includes a substrate that defines a plurality of non-overlapping areas. Each non-overlapping area includes a plurality of detection electrodes arranged in non-overlapping columns. The columns include a horizontal detection electrode that extends along substantially an entire height of a first column, and at least a second column of at least two vertical detection electrodes that are electrically isolated from one another. The system further includes a measuring circuit configured to measure a mutual capacitance between the horizontal detection electrode and each of the at least two vertical detection electrodes in a given area. A processing logic circuit of the system is configured to determine horizontal detection electrode and vertical detection electrode combinations that have a changed mutual capacitance. The processing logic is also configured to determine the touch location based on a location of the determined horizontal detection electrode and vertical electrode combinations.
Owner:ELO TOUCH SOLUTIONS INC

RF impedance matching network

An RF impedance matching network includes a transformation circuit configured to provide a transformed impedance; a first shunt circuit in parallel to the RF input, the first shunt circuit including a first shunt variable capacitance component comprising (a) a plurality of first shunt capacitors coupled in parallel, and (b) a plurality of first shunt switches coupled to the plurality of first shunt capacitors and configured to connect and disconnect each of the plurality of first shunt capacitors to a first virtual ground; and a second shunt variable capacitance component including (a) a plurality of second shunt capacitors coupled in parallel, and (b) a plurality of second shunt switches coupled to the plurality of second shunt capacitors and configured to connect and disconnect each of the plurality of second shunt capacitors to a second virtual ground.
Owner:ASM AMERICA INC

Method and device for predicting electrolytic capacitor defects, converter and uninterruptible power supply equipped with such a device

A method and device for predicting defects of a capacitor, the method including determining the ripple voltage (Udc), the temperature (TP), and the current (Ic) of the capacitor, determining the value of an equivalent series resistance (ESR) of the capacitor, and the capacitance value (C) of the capacitor using a digital filter, determining information representative of the state of aging of the capacitor according to the temperature of the capacitor, and displaying that information and information representative of the value of the capacitance (C) and / or information representative of a cause associated with the state of aging according to the capacitance value. The device may include a converter and an uninterruptible power supply.
Owner:MGE UPS SYST

Capacitance detector circuit, capacitance detection method, and fingerprint sensor using the same

A capacitance detecting circuit of a capacitive sensor having a plurality of column lines and a row line intersecting the column lines detects a change in capacitance at an intersection of a column line and a row line. The circuit includes a PN code generating unit for generating a code having orthogonality in time sequence to output the generated code as a column drive signal, a column line drive unit for driving a predetermined one of the column lines which are selected in response to the code, a capacitance detecting unit, connected to the row line, for detecting a voltage by converting a total sum of changes in capacitance at intersections of the selected column lines into the voltage to output the detected voltage, and a decode processing unit for performing a predetermined calculation on the detected voltage output from the capacitance detecting unit and the code to determine a voltage value responsive to the capacitance change at the intersection.
Owner:SYNAPTICS INC

Method of operating a touch panel, touch panel and display device

A method of operating a touch panel including a plurality of driving lines and a plurality of sensing lines includes performing a first limited scan by activating only a first portion of the plurality of driving lines and only a first portion of the plurality of sensing lines, such that a first coarse position of a first touch by a user is detected, and performing a first local scan by activating only driving lines and sensing lines adjacent to the detected first coarse position of the first touch, such that a first fine position of the first touch by the user is detected.
Owner:SAMSUNG DISPLAY CO LTD

Automatically balanced sensing device and method for multiple capacitive sensors

Disclosed is method for compensating for variation in the capacitance between multiple capacitive sensors. Prior to sensing operations, baseline capacitance values can be acquired for all sensors. A correction factor can be calculated based on such baseline values. During sensing operations (run-time), variations in capacitance from baseline values can be modified by appropriate correction factors. Sensitivity between sensors can thus be made more uniform.
Owner:MONTEREY RES LLC

Capacitance detector circuit, capacitance detection method, and fingerprint sensor using the same

A capacitance detecting circuit of a capacitive sensor having a plurality of column lines and a row line intersecting the column lines detects a change in capacitance at an intersection of a column line and a row line. The circuit includes a PN code generating unit for generating a code having orthogonality in time sequence to output the generated code as a column drive signal, a column line drive unit for driving a predetermined one of the column lines which are selected in response to the code, a capacitance detecting unit, connected to the row line, for detecting a voltage by converting a total sum of changes in capacitance at intersections of the selected column lines into the voltage to output the detected voltage, and a decode processing unit for performing a predetermined calculation on the detected voltage output from the capacitance detecting unit and the code to determine a voltage value responsive to the capacitance change at the intersection.
Owner:SYNAPTICS INC

Touch detection techniques for capacitive touch sense systems

A technique for recognizing and rejecting false activation events related to a capacitance sense interface includes measuring a capacitance value of a capacitance sense element. The measured capacitance value is analyzed to determine a baseline capacitance value for the capacitance sensor. The capacitance sense interface monitors a rate of change of the measured capacitance values and rejects an activation of the capacitance sense element as a non-touch event when the rate of change of the measured capacitance values have a magnitude greater than a threshold level, indicative of a maximum rate of change of a touch event.
Owner:MONTEREY RES LLC

Electrical capacitance proximity sensor

An electrical capacitance proximity sensor for detecting a nearby object takes a normal operation mode for detecting the nearby object approaching and a self-diagnostic mode for detecting a correct connection between a sensor section and a detecting circuit section. The detecting circuit section is provided with a buffer controller which supplies a second oscillation signal having the same phase and voltage as a first oscillation signal applied to a guard electrode in the normal operation mode, and stops supplying the second oscillation signal in the self-diagnostic mode. A control circuit determines whether the sensor section is correctly connected to the detecting circuit section base on the change in the detecting signal in the normal operation mode and the self-diagnostic mode.
Owner:THE FUJIKURA CABLE WORKS LTD

Capacitive sensor

A pressure-sensitive capacitive sensor includes a sensing unit in which a plurality of column wires and a plurality of row wires are formed in a matrix, a detecting signal generator, and filters. Capacitances at intersections between the column wires and the row wires change in accordance with externally applied pressure. The detecting signal generator sequentially outputs pulse signals of a predetermined frequency to the column wires of the sensing unit. The filters are connected to the respective row wires of the sensing unit and extract amplitudes of signals of the predetermined frequency. The amplitude is proportional to the capacitance at the intersection.
Owner:ALPS ALPINE CO LTD

Method and circuit for measuring capacitance and capacitance mismatch

A circuit and method for measuring capacitance and capacitance mismatch of at least one capacitor pair are provided. The circuit includes a first switch, a second switch, a third switch and a P-type transistor. A terminal of the first switch is connected to a terminal of a first capacitor, and a terminal of the second switch is connected to a terminal of a second capacitor. A terminal of the third switch is connected to another terminal of the first capacitor and another terminal of the second capacitor, and a gate of the P-type transistor is connected to another terminal of the third switch. When the first, second and third switches are turned on, a capacitance of the first capacitor, a capacitance of the second capacitor, or a capacitance mismatch between the first and second capacitances is measured.
Owner:UNITED MICROELECTRONICS CORP

Clocked based method and devices for measuring voltage-variable capacitances and other on-chip parameters

A characterization method for a device under test includes applying a bias voltage to a test circuit. The test circuit includes a first transistor coupled to the device under test, a second transistor coupled to the device under test and to the first transistor. A third transistor is coupled to a dummy device, a fourth transistor is coupled to the dummy device and to the third transistor. The transistors are of a common type. The characterization method further includes applying non-overlapping clocking signals to transistors of the test circuit to produce test signals for application to the device under test and detecting a current in one or more transistors from the device under test. The bias voltage is further varied to characterize the device under test.
Owner:MONTEREY RES LLC

Noise Handling in Capacitive Touch Sensors

In a capacitive sensor of the type having X electrodes which are driven and Y electrodes that are used as sense channels connected to charge measurement capacitors, signal measurements are made conventionally by driving the X electrodes to transfer successive packets of charge to the charge measurement capacitors. However, an additional noise measurement is made by emulating or mimicking the signal measurement, but without driving the X electrodes. The packets of charge transferred to the charge accumulation capacitor are then indicative of noise induced on the XY sensing nodes. These noise measurements can be used to configure post-processing of the signal measurements.
Owner:NEODRON LTD

Capacitive sensing enabled switch mode power supply and data transfer

A microchip for control of a switch mode power supply (SMPS), with said microchip also having the ability to measure capacitance of an electrode or sense plate structure or structures, and use of a low power, power supply structure to supply said microchip, said power supply structure distinct from the main energy path via said SMPS to a load. The microchip may control said SMPS to transition between an active state and an inactive state, with the measured capacitance used to determine a condition for state transition. In said SMPS inactive state, only the microchip draws power to operate its capacitive sensing circuitry, leading to a significant SMPS standby losses decrease compared to prior art. Further teachings by the present invention include capacitive sensing based data transfer, universal charging platforms for mobile devices, noise immunity enhancements, various lighting embodiments as well as SMPS operation improvements.
Owner:AZOTEQ PTY LTD

Capacitance detection apparatus

A capacitance detection apparatus includes a detection electrode for detecting approach of an object on the basis of a change of capacitance, a calculating circuit for calculating a value associated with the capacitance change, a judging circuit for judging whether the calculated value is a normal or initial value calculated after or before a predetermined period of time lapse from a start time of the capacitance detection apparatus, an initial reference value-determining circuit for determining an initial reference value, a difference calculating circuit for calculating a difference between the normal value and a value calculated earlier than a time when the normal value is calculated by the predetermined period of time or longer or between the initial value and the initial reference value, and a determining circuit for determining whether the object is approaching by comparing the difference with a predetermined threshold value.
Owner:AISIN SEIKI KK

Differential capacitance measurement

A circuit and method are given, which realizes a stable yet sensitive differential capacitance measuring device with good RF-suppression and with very acceptable noise features for use in capacitive sensor evaluation systems. By evaluating the difference of capacitor values only—with the help of a switched capacitor front-end—large spreads of transducer capacitor values are tolerable. Furthermore a mode of operation can be set up, where no essential galvanic connection between sensor input and the active read-out input at any given time is existing. The solution found exhibits a highly symmetrical construction. Using the intrinsic advantages of that solution the circuit of the invention is manufactured as an integrated circuit with standard CMOS technology at low cost.
Owner:DIALOG SEMICONDUCTOR GMBH

Capacitive fingerprint sensor with improved sensing element

The present invention relates to a capacitive fingerprint sensing device comprising a semiconductor substrate; and an array of sensing elements formed on the semiconductor substrate. Each of the sensing elements comprises a protective dielectric top layer; a sensing structure arranged underneath the top layer; and a charge amplifier connected to the sensing structure. The charge amplifier comprises a negative input connected to the sensing structure; a positive input; an output providing a sensing signal; a feedback capacitor; and a sense transistor having a gate constituting the negative input. The sense transistor is formed in an insulated well in the semiconductor substrate. The fingerprint sensing device further comprises excitation signal providing circuitry connected to the positive input of the charge amplifier and the well for changing electric potentials of the sensing structure and the well, to thereby reduce the influence of parasitic capacitances in the sensing element.
Owner:FINGERPRINT CARDS ANACATUM IP AB

Method and device for position detection

A method and device for position detection are disclosed. A self-capacitance detection can be performed by a sensing device. According to the result of the self-capacitance detection, a first mutual-capacitance detection can be performed for determining one or more first 1-D positions. According to the result of the first mutual-capacitance detection, a second mutual-capacitance detection can be performed for determining one or more second 1-D positions corresponding to each first 1-D position. One or more 2-D positions can be provided according to the one or more second 1-D positions corresponding to each first 1-D position. Besides, during the self-capacitance detection, the first mutual-capacitance detection, and the second mutual-capacitance detection, a touch related sensing information corresponding to a touch that covers a wide area can be neglected for palm rejection.
Owner:EGALAX EMPIA TECH INC

System and method for sensing capacitance change of a capacitive sensor

The present invention relates to systems and methods for sensing capacitance change of a capacitive sensor and for optimizing a capacitive sensing circuit. In an exemplary embodiment, a capacitive sensor may be coupled to an amplifier at floating node. A programming circuit is connected to the floating node for controlling a charge on the floating node. A method of controlling the charge of the floating node is also provided. The method includes applying a first predetermined voltage to a source of a programming transistor, applying a second predetermined voltage to a floating gate of the programming transistor, and applying a third predetermined voltage to a drain of the programming transistor until a charge on the floating gate of the programming transistor reaches a predetermined value. The charge on the floating gate of the programming transistor drives the charge on the floating node to the predetermined value, and thus is controlled.
Owner:GEORGIA TECH RES CORP

Capacitance change detection device

A capacitance change detection device includes a sensor electrode, and an electrode capacitance measurement device for measuring capacitance of the sensor electrode on the basis of a correlation value based on a reference capacitance at every first predetermined time. A detection signal is generated when a current measurement value of capacitance is changed by equal to or greater predetermined threshold value than a measurement value obtained a second predetermined time before the current measurement value is measured. The capacitance change detection device further includes a sensitivity compensation capacitance for generating capacitance variations equivalent to specific variations of capacitance of the sensor electrode, and being switched between a connected state and a disconnected state. The threshold value is determined as a difference between measurement values of capacitance of the sensor electrode measured at the connected state and at the disconnected state. The threshold value is renewed at every third predetermined time.
Owner:AISIN SEIKI KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products