Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1901 results about "Capacitive sensing" patented technology

In electrical engineering, capacitive sensing (sometimes capacitance sensing) is a technology, based on capacitive coupling, that can detect and measure anything that is conductive or has a dielectric different from air.

Flexible transparent touch sensing system for electronic devices

A transparent, capacitive sensing system particularly well suited for input to electronic devices is described. The sensing system can be used to emulate physical buttons or slider switches that are either displayed on an active display device or printed on an underlying surface. The capacitive sensor can further be used as an input device for a graphical user interface, especially if overlaid on top of an active display device like an LCD screen to sense finger position (X / Y position) and contact area (Z) over the display. In addition, the sensor can be made with flexible material for touch sensing on a three-dimensional surface. Because the sensor is substantially transparent, the underlying surface can be viewed through the sensor. This allows the underlying area to be used for alternative applications that may not necessarily be related to the sensing system. Examples include advertising, an additional user interface display, or apparatus such as a camera or a biometric security device.
Owner:SYNAPTICS INC

Capacitive sensor behind black mask

ActiveUS20100026656A1Enhance and provide additional functionalityElectronic switchingInput/output processes for data processingDisplay deviceCapacitive sensing
Devices having one or more sensors located outside a viewing area of a touch screen display are disclosed. The one or more sensors can be located behind an opaque mask area of the device; the opaque mask area extending between the sides of a housing of the device and viewing area of the touch screen display. In addition, the sensors located behind the mask can be separate from a touch sensor panel used to detect objects on or near the touch screen display, and can be used to enhance or provide additional functionality to the device. For example, a device having a sensor located outside the viewing area can be used to detect objects in proximity to a functional component incorporated in the device, such as an ear piece (i.e., speaker for outputting sound). The sensor can also output a signal indicating a level of detection which may be interpreted by a controller of the device as a level of proximity of an object to the functional component. In addition, the controller can initiate a variety of actions related to the functional component based on the output signal, such as adjusting the volume of the earpiece.
Owner:APPLE INC

Touch Screen Element

A capacitive two-dimensional (2D) touch panel has three sets of interleaved electrodes. A first set of electrodes is spaced apart along the y-direction and these are galvanically connected to each other by a resistive strip connected at either end to a connection line. A second set of electrodes is also arrayed along the y-direction and these are galvanically connected to each other via a notionally non-resistive first connection. A third set of electrodes is also arrayed along the y-direction and these are galvanically connected to each other via a notionally non-resistive second connection. The second and third sets of electrodes are interleaved without galvanic cross-conduction to provide a gradient along the x-direction to resolve touch position in the x-direction. The first set of electrodes resolves touch position along the y-direction. Passive or active capacitive sensing techniques may be used to acquire the position information from the 2D touch panel.
Owner:ATMEL CORP

Capacitive Touch Panel

A capacitive touch panel includes a substrate having a pattern-forming surface, a color pixel layer formed on the substrate, and a patterned conductive layer formed on the pattern-forming surface of the substrate. The patterned conductive layer includes a plurality of first electrode units, a plurality of second electrode units, a plurality of spaced apart first conductive lines, and a plurality of spaced apart second conductive lines. The first electrode units are capacitively coupled to the second electrode units so as to form a plurality of two dimensionally arranged capacitive sensing units. Each of the first electrode units includes a plurality of first electrodes. Each of the first conductive lines is connected to and extends along the pattern-forming surface from at least one of the first electrodes of a respective one of the first electrode units into a bonding area of the pattern-forming surface. The second conductive lines extend respectively from the second electrode units into the bonding area, and do not cross the first conductive lines.
Owner:ACROSENSE TECH

Lattice touch-sensing system

InactiveUS6970160B2Improved multiple-touch recognitionImproved rejection characteristicElectronic switchingCathode-ray tube indicatorsElectricityTouch Senses
This invention is directed to a lattice touch-sensing system for detecting a position of a touch on a touch-sensitive surface. The lattice touch-sensing system may include two capacitive sensing layers, separated by an insulating material, where each layer consists of substantially parallel conducting elements, and the conducting elements of the two sensing layers are substantially orthogonal to each other. Each element may comprise a series of diamond shaped patches that are connected together with narrow conductive rectangular strips. Each conducting element of a given sensing layer is electrically connected at one or both ends to a lead line of a corresponding set of lead lines. A control circuit may also be included to provide an excitation signal to both sets of conducting elements through the corresponding sets of lead lines, to receive sensing signals generated by sensor elements when a touch on the surface occurs, and to determine a position of the touch based on the position of the affected bars in each layer.
Owner:3M INNOVATIVE PROPERTIES CO

Method of Fabricating High Aspect Ratio Transducer Using Metal Compression Bonding

A method and apparatus are described for fabricating a high aspect ratio MEMS device by using metal thermocompression bonding to assemble a reference wafer (100), a bulk MEMS active wafer (200), and a cap wafer (300) to provide a proof mass (200d) formed from the active wafer with bottom and top capacitive sensing electrodes (115, 315) which are hermetically sealed from the ambient environment by sealing ring structures (112 / 202 / 200a / 212 / 312 and 116 / 206 / 200e / 216 / 316).
Owner:FREESCALE SEMICON INC

Keypad

A thin keypad including a top surface layer, a light guide layer, a capacitive sensing layer and a piezo layer provides for touch input, pressure input and haptic feedback.
Owner:NOKIA TECHNOLOGLES OY

Garment incorporating embedded physiological sensors

A system for unobtrusively measuring bioelectric signals developed by an individual includes multiple sensors, one or more of which constitutes a capacitive sensor attached to a holding device. The holding device serves as a mounting structure that holds sensors in place within a wearable garment. The holding device and sensors are horizontally and vertically adjustable relative to the garment, while the sensors are pressed against the individual and prevented from undesirable shifting upon movement of the individual.
Owner:QUANTUM APPLIED SCI & RES

Capacitive sensor for sensing tactile and proximity, and a sensing system using the same

Disclosed is a capacitive proximity sensor in dual implementation. The sensor comprises an upper electrode layer having a plurality of electrodes disposed in line with each other, a lower electrode layer having a plurality of electrodes disposed in line with each other and an insulating layer disposed between the upper electrode layer and the lower electrode layer. The sensor detects the proximity of approaching objects by the capacitance change between the electrodes disposed in the upper electrode layer, and detects the contact of any objects by the capacitance change between the electrodes of the upper electrode layer and the electrodes of the lower electrode layer.
Owner:KOREA INST OF SCI & TECH +1

Swiped aperture capacitive fingerprint sensing systems and methods

A fingerprint sensing system includes an image sensor, a rate sensor and a sensor circuit. The image sensor includes a linear array of capacitive sensors for capacitive sensing of ridge peaks and ridge valleys of a fingerprint on a swiped finger. The rate sensor senses the speed of the finger as it is swiped across the image sensor. The sensor circuit supplies image drive signals to the image sensor and detects image signals in response to the drive signals. The sensor circuit supplies rate drive signals to the rate sensor and detects rate signals in response to the rate drive signals. The sensor circuit further coordinates the image signals and the rate signals to provide a fingerprint image. The image sensor may be configured as an image pickup plate and multiple image drive plates formed on a substrate, such as a flexible printed circuit board or other flexible substrate which may conform to the shape of the finger.
Owner:SYNAPTICS INC

Headsets and Headset Power Management

The invention relates to an energy saving headset that comprises a power management unit operable to reduce the power consumption of the headset when a user is not present. The power management unit uses capacitive sensing to detect the presence of the user. Capacitive sensing is advantageous since it provides a flexible and reliable sensor that can accurately detect the presence or absence of a user either by detecting user proximity or user contact. Moreover, in various embodiments, the sensitivity of a capacitive sensor may be adjusted to account for user movement or changes in environmental conditions, such as, for example, the presence of water, or sweat, on the headset to further improve sensing reliability. The invention further relates to headsets using user presence signals based on capacitive sensing to control other functions of the headset or to control external devices to which the headset is connected, either wirelessly or by wires.
Owner:ATMEL CORP

Information input device and display device

An information input device includes a touch panel configured to be provided with a touch sensor that detects a position at which a sensing object is brought close to a sensing surface. In this information input device, the touch sensor has a scanning electrode and a detecting electrode that is opposed to the scanning electrode with the intermediary of a dielectric substance, and is a capacitive sensor whose electrostatic capacitance changes if the sensing object is brought close to the detecting electrode. Furthermore, a slit is formed in a surface of the detecting electrode opposed to the scanning electrode.
Owner:JAPAN DISPLAY INC

Systems and methods using computer vision and capacitive sensing for cursor control

Disclosed is a unique system and method that facilitates cursor control based in part on computer vision activated by a capacitive touch sensor. When turned on, user hand gestures or movements can be tracked by a monitoring component and those movements can be converted in real-time to control or drive cursor movements and / or position on a user interface. The system comprises a monitoring component or camera that can be activated by touch or pressure applied to a capacitive touch sensor. A circuit within the sensor determines when the user is touching a button (e.g., on keyboard or mouse) that activates the monitoring component and cursor control mechanism. Thus, intentional hand movements by the user can readily be determined.
Owner:MICROSOFT TECH LICENSING LLC

Ground Guard for Capacitive Sensing

ActiveUS20090267916A1Improve touch event detection of touchImprove touch event detectionInput/output processes for data processingCapacitanceField line
A touch sensor panel is disclosed including the use of ground guards or ground isolation bars to improve the touch event detection capabilities of the touch sensor panel. Ground isolation bars can be formed between connecting traces and adjacent sense lines to shunt near-field lines to ground and reduce unwanted capacitive coupling between the connecting traces and the sense lines. Ground guards can be formed between the drive and sense lines to partially or fully surround a sense line and shunt near-field lines to ground and improve the touch event detection capabilities of the sensor.
Owner:APPLE INC

Active stylus for touch sensing applications

Embodiments relate generally to control devices, such as human interface devices, configured for use with a touch-screen containing device. More specifically, the present invention relates to methods and various apparatus that are used to actively control the interaction of a handheld device, such as a stylus pen, with a touch-screen containing device. Embodiments of the invention provide a universal handheld device that is able to provide input to any type of capacitive sensing touch-screen containing device, regardless of the manufacturer or, in some embodiments, without knowledge of the touch-screen containing device manufacturer's specific capacitive touch-sensing detection techniques.
Owner:LOGITECH EURO SA

Method and apparatus for detecting lift off on a touchscreen

A composite touchscreen incorporates acoustic pulse recognition sensing and capacitive sensing technology. The hybrid screen incorporates the advantages of each technology while minimizing the drawbacks. When such a screen is incorporated in a gaming device specialized gestures and functions can be implemented that enhance the interface, the range of games, and the gaming experience.
Owner:IGT

Method and apparatus for providing an integrated membrane switch and capacitive sensor

A circuit assembly for providing a switch sensor and a capacitive sensor. The circuit assembly has a first pattern of conductive material in a first plane and a second pattern of conductive material in a second plane. An insulating member in an intermediate plane separates the first and second patterns. In a switch sensor area, the insulating member has openings to allow a first conductive element in the first pattern to contact a second conductive element in the second pattern responsive a force being applied to the first conductive element. In the capacitive sensor area, the insulating member maintains spacing between conductive material in the first and second patterns. The circuit assembly also includes a preventative capacitance configuration that limits non-intentional capacitive coupling in the capacitive sensor area.
Owner:SYNAPTICS INC

Optical capacitive thumb control with pressure sensor

A small sensor surface designed to control a smart phone or Mobile Internet Device (MID). The sensor surface may be mounted on the side of the proposed device in a position where a user's thumb or finger naturally falls when holding the device in his / her hand. The sensor surface is simultaneously convex and concave, providing both visual and physical cues for the use of the sensor surface. The sensor may include capacitive sensing, optical sensing and pressure sensing capabilities to interpret thumb gestures into device control.
Owner:INTEL CORP

Unobtrusive measurement system for bioelectric signals

A system for unobtrusively measuring bioelectric signals developed by an individual includes multiple sensors, one or more of which constitutes a capacitive sensor, embedded into or otherwise integrated into an object, such as a chair, bed or the like, used to support the individual. The object serves as mounting structure that holds the sensors in place. The sensors are preferably arranged in the form of an array, with particular ones of the sensors being selectable from the array for measuring the bioelectric signals which are transmitted, such as through a wireless link, for display and / or analysis purposes.
Owner:QUANTUM APPLIED SCI & RES

Body fluid sampling device with a capacitive sensor

A body fluid sensing device with a body fluid capture structure and a body fluid measurement sensor positioned in the body fluid capture structure. A capacitance sensor is coupled to the body fluid measurement sensor. The capacitance sensor is used to assist in the positioning of a body part relative to the body fluid capture structure.
Owner:SANOFI AVENTIS DEUT GMBH

User interface device

A keypad (7) of a mobile telephone handset comprises a keymat (17) beneath which are disposed capacitive sensing plates (20, 21). The keypad may be used in a conventional manner to enter alphanumeric data by pressing keys (18) or as a touch pad by sliding a finger over the surface of the keymat (17).
Owner:NOKIA TECHNOLOGLES OY

Multipoint touchscreen

A touch panel having a transparent capacitive sensing medium configured to detect multiple touches or near touches that occur at the same time and at distinct locations in the plane of the touch panel and to produce distinct signals representative of the location of the touches on the plane of the touch panel for each of the multiple touches is disclosed.
Owner:HOTELLING STEVE +2

Capacitive liquid level indicator

A capacitive liquid level indicator having a capacitive sensor array superposed on each side of a dielectric substrate, wherein the sensor signal detection electronics are located immediately adjacent each capacitive sensor. These provisions result in high sensitivity of detection of submergence in the liquid, as well as essentially eliminating parasitic electric fields. The preferred capacitive sensors are interdigitated capacitors, and the preferred sensor signal detection circuit is an RC bridge and a comparator, wherein the comparator senses a voltage difference in the RC bridge between a sensor resistor and sensor capacitor of a first leg thereof and a reference resistor and reference capacitor of a second leg thereof. It is preferred for the capacitive liquid level indicator to be coated with a low dielectric conformal coating to thereby insulate the electronic components (inclusive of the capacitive sensors) thereof with respect to the liquid into which it is submerged. The sensitivity of the capacitive liquid level sensor according to the present invention is extremely high; as a result, a reference capacitive sensor is obviated, and there are no false indications of liquid due to any film of the liquid clinging to an exposed portion of the capacitive liquid level sensor.
Owner:GDM

Modulated power supply for reduced parasitic capacitance

Embodiments described herein include an input device for capacitive sensing. The input device includes a plurality of sensor electrodes, a modulated power supply, a plurality of analog front end channels, and a sensor module. The modulated power supply is configured to generate a modulated reference signal. The plurality of analog front end channels are coupled to the plurality of sensor electrodes and to the modulated power supply and are configured to flow charge in response to an input object in a sensing area associated with the plurality of sensor electrodes. The sensor module comprises transmitter circuitry that is coupled to the plurality of sensor electrodes and to the plurality of analog front end channels. The sensor module is configured to drive the plurality of sensor electrodes with a modulated sensor electrode signal that is based on the modulated reference signal, via the plurality of analog front end channels.
Owner:SYNAPTICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products