Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1900 results about "Capacitive sensing" patented technology

In electrical engineering, capacitive sensing (sometimes capacitance sensing) is a technology, based on capacitive coupling, that can detect and measure anything that is conductive or has a dielectric different from air.

Flexible transparent touch sensing system for electronic devices

A transparent, capacitive sensing system particularly well suited for input to electronic devices is described. The sensing system can be used to emulate physical buttons or slider switches that are either displayed on an active display device or printed on an underlying surface. The capacitive sensor can further be used as an input device for a graphical user interface, especially if overlaid on top of an active display device like an LCD screen to sense finger position (X / Y position) and contact area (Z) over the display. In addition, the sensor can be made with flexible material for touch sensing on a three-dimensional surface. Because the sensor is substantially transparent, the underlying surface can be viewed through the sensor. This allows the underlying area to be used for alternative applications that may not necessarily be related to the sensing system. Examples include advertising, an additional user interface display, or apparatus such as a camera or a biometric security device.
Owner:SYNAPTICS INC

Capacitive Touch Panel

A capacitive touch panel includes a substrate having a pattern-forming surface, a color pixel layer formed on the substrate, and a patterned conductive layer formed on the pattern-forming surface of the substrate. The patterned conductive layer includes a plurality of first electrode units, a plurality of second electrode units, a plurality of spaced apart first conductive lines, and a plurality of spaced apart second conductive lines. The first electrode units are capacitively coupled to the second electrode units so as to form a plurality of two dimensionally arranged capacitive sensing units. Each of the first electrode units includes a plurality of first electrodes. Each of the first conductive lines is connected to and extends along the pattern-forming surface from at least one of the first electrodes of a respective one of the first electrode units into a bonding area of the pattern-forming surface. The second conductive lines extend respectively from the second electrode units into the bonding area, and do not cross the first conductive lines.
Owner:ACROSENSE TECH

Lattice touch-sensing system

InactiveUS6970160B2Improved multiple-touch recognitionImproved rejection characteristicElectronic switchingCathode-ray tube indicatorsElectricityTouch Senses
This invention is directed to a lattice touch-sensing system for detecting a position of a touch on a touch-sensitive surface. The lattice touch-sensing system may include two capacitive sensing layers, separated by an insulating material, where each layer consists of substantially parallel conducting elements, and the conducting elements of the two sensing layers are substantially orthogonal to each other. Each element may comprise a series of diamond shaped patches that are connected together with narrow conductive rectangular strips. Each conducting element of a given sensing layer is electrically connected at one or both ends to a lead line of a corresponding set of lead lines. A control circuit may also be included to provide an excitation signal to both sets of conducting elements through the corresponding sets of lead lines, to receive sensing signals generated by sensor elements when a touch on the surface occurs, and to determine a position of the touch based on the position of the affected bars in each layer.
Owner:3M INNOVATIVE PROPERTIES CO

Systems and methods using computer vision and capacitive sensing for cursor control

Disclosed is a unique system and method that facilitates cursor control based in part on computer vision activated by a capacitive touch sensor. When turned on, user hand gestures or movements can be tracked by a monitoring component and those movements can be converted in real-time to control or drive cursor movements and / or position on a user interface. The system comprises a monitoring component or camera that can be activated by touch or pressure applied to a capacitive touch sensor. A circuit within the sensor determines when the user is touching a button (e.g., on keyboard or mouse) that activates the monitoring component and cursor control mechanism. Thus, intentional hand movements by the user can readily be determined.
Owner:MICROSOFT TECH LICENSING LLC

Active stylus for touch sensing applications

Embodiments relate generally to control devices, such as human interface devices, configured for use with a touch-screen containing device. More specifically, the present invention relates to methods and various apparatus that are used to actively control the interaction of a handheld device, such as a stylus pen, with a touch-screen containing device. Embodiments of the invention provide a universal handheld device that is able to provide input to any type of capacitive sensing touch-screen containing device, regardless of the manufacturer or, in some embodiments, without knowledge of the touch-screen containing device manufacturer's specific capacitive touch-sensing detection techniques.
Owner:LOGITECH EURO SA

Method and apparatus for detecting lift off on a touchscreen

A composite touchscreen incorporates acoustic pulse recognition sensing and capacitive sensing technology. The hybrid screen incorporates the advantages of each technology while minimizing the drawbacks. When such a screen is incorporated in a gaming device specialized gestures and functions can be implemented that enhance the interface, the range of games, and the gaming experience.
Owner:IGT

Optical capacitive thumb control with pressure sensor

A small sensor surface designed to control a smart phone or Mobile Internet Device (MID). The sensor surface may be mounted on the side of the proposed device in a position where a user's thumb or finger naturally falls when holding the device in his / her hand. The sensor surface is simultaneously convex and concave, providing both visual and physical cues for the use of the sensor surface. The sensor may include capacitive sensing, optical sensing and pressure sensing capabilities to interpret thumb gestures into device control.
Owner:INTEL CORP

Capacitive liquid level indicator

A capacitive liquid level indicator having a capacitive sensor array superposed on each side of a dielectric substrate, wherein the sensor signal detection electronics are located immediately adjacent each capacitive sensor. These provisions result in high sensitivity of detection of submergence in the liquid, as well as essentially eliminating parasitic electric fields. The preferred capacitive sensors are interdigitated capacitors, and the preferred sensor signal detection circuit is an RC bridge and a comparator, wherein the comparator senses a voltage difference in the RC bridge between a sensor resistor and sensor capacitor of a first leg thereof and a reference resistor and reference capacitor of a second leg thereof. It is preferred for the capacitive liquid level indicator to be coated with a low dielectric conformal coating to thereby insulate the electronic components (inclusive of the capacitive sensors) thereof with respect to the liquid into which it is submerged. The sensitivity of the capacitive liquid level sensor according to the present invention is extremely high; as a result, a reference capacitive sensor is obviated, and there are no false indications of liquid due to any film of the liquid clinging to an exposed portion of the capacitive liquid level sensor.
Owner:GDM

Modulated power supply for reduced parasitic capacitance

Embodiments described herein include an input device for capacitive sensing. The input device includes a plurality of sensor electrodes, a modulated power supply, a plurality of analog front end channels, and a sensor module. The modulated power supply is configured to generate a modulated reference signal. The plurality of analog front end channels are coupled to the plurality of sensor electrodes and to the modulated power supply and are configured to flow charge in response to an input object in a sensing area associated with the plurality of sensor electrodes. The sensor module comprises transmitter circuitry that is coupled to the plurality of sensor electrodes and to the plurality of analog front end channels. The sensor module is configured to drive the plurality of sensor electrodes with a modulated sensor electrode signal that is based on the modulated reference signal, via the plurality of analog front end channels.
Owner:SYNAPTICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products