Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4230 results about "Excitation signal" patented technology

In audio processing, and specially audio coding, there are simple “excitation-based” models to generate speech. The key idea is that each letter in the alphabet can be reproduced by an “excitation” signal, followed by a special filter.

System for bandwidth extension of Narrow-band speech

A system and method are disclosed for extending the bandwidth of a narrowband signal such as a speech signal. The method applies a parametric approach to bandwidth extension but does not require training. The parametric representation relates to a discrete acoustic tube model (DATM). The method comprises computing narrowband linear predictive coefficients (LPCs) from a received narrowband speech signal, computing narrowband partial correlation coefficients (parcors) using recursion, computing Mnb area coefficients from the partial correlation coefficient, and extracting Mwb area coefficients using interpolation. Wideband parcors are computed from the Mwb area coefficients and wideband LPCs are computed from the wideband parcors. The method further comprises synthesizing a wideband signal using the wideband LPCs and a wideband excitation signal, highpass filtering the synthesized wideband signal to produce a highband signal, and combining the highband signal with the original narrowband signal to generate a wideband signal. In a preferred variation of the invention, the Mnb area coefficients are converted to log-area coefficients for the purpose of extracting, through shifted-interpolation, Mwb log-area coefficients. The Mwb log-area coefficients are then converted to Mwb area coefficients before generating the wideband parcors.
Owner:CERENCE OPERATING CO

Ultrathin mutual capacitance touch screen and combined ultrathin touch screen

InactiveUS20110007030A1Increases the effective capacitivity of the monolayer touch screenHigh strengthInput/output processes for data processingConductive materialsTouchscreen
Ultrathin mutual capacitance touch screen and combined ultrathin touch screen composed by the said ultrathin mutual capacitance touch screen, the said ultrathin mutual capacitance touch screen comprises driving electrode clusters and sensing electrode clusters, wherein the driving electrode clusters are connected with an excitation signal source arranged outside the touch screen, and the sensing electrode clusters are connected with a sensing control module arranged outside the touch screen. The driving electrode clusters comprise tabulate driving electrodes which are made of transparent conductive materials and connected in series and/or in parallel, and the sensing electrode clusters comprise tabulate sensing electrodes which are made of transparent conductive materials and connected in series and/or in parallel. In particular, in a pair of adjacent driving electrode and sensing electrode of the touch screen, the plate area of at least one electrode producing the eigen mutual electric field is smaller than that of the same electrode producing the variable mutual electric field. The present invention make the thickness of the touch screen become thinner, and ensure a higher effective capacitivity.
Owner:FOCALTECH SYST LTD

System and method for measurement of an impedance using a catheter such as an ablation catheter

ActiveUS20090171345A1Suitable for useMaximize predetermined distanceSurgical instruments for heatingRf ablationPatch electrode
A catheter and patch electrode system is provided for use with an apparatus, such as an ablation generator, having a 4-wire interface for improved impedance measurement. The 4-wire interface includes a pair of source connectors across which an excitation signal is produced and a pair of sense connector wires across which the impedance is measured. The RF ablation generator may also produce an ablation signal across a source wire and an indifferent return patch electrode. The system further includes a cable that connects the generator to a catheter. The catheter includes a shaft having a proximal end and a distal end, with an ablation tip electrode disposed at the distal end. A source lead is electrically coupled to the tip electrode and extends through the shaft to the proximal end where it is terminated. An optional sense lead is also electrically coupled to the tip electrode and extends through the shaft to the proximal end. The system further includes a source return (e.g., skin patch) and a sense return (e.g., skin patch), either or none of which may be combined with the indifferent return, and if used may be placed on opposite sides of the patient for improved performance. The impedance sensor circuit produces an excitation signal across the source connectors, which is then carried to the catheter by the cable, then to the tip electrode, travels through the complex load (tissue volume), and returns to the generator via a patch electrode. The impedance is measured by observing the voltage drop across the sense connectors caused by the excitation signal.
Owner:ST JUDE MEDICAL ATRIAL FIBRILLATION DIV

Method of bandwidth extension for narrow-band speech

A system and method are disclosed for extending the bandwidth of a narrowband signal such as a speech signal. The method applies a parametric approach to bandwidth extension but does not require training. The parametric representation relates to a discrete acoustic tube model (DATM). The method comprises computing narrowband linear predictive coefficients (LPCs) from a received narrowband speech signal, computing narrowband partial correlation coefficients (parcors) using recursion, computing Mnb area coefficients from the partial correlation coefficient, and extracting Mwb area coefficients using interpolation. Wideband parcors are computed from the Mwb area coefficients and wideband LPCs are computed from the wideband parcors. The method further comprises synthesizing a wideband signal using the wideband LPCs and a wideband excitation signal, highpass filtering the synthesized wideband signal to produce a highband signal, and combining the highband signal with the original narrowband signal to generate a wideband signal. In a preferred variation of the invention, the Mnb area coefficients are converted to log-area coefficients for the purpose of extracting, through shifted-interpolation, Mwb log-area coefficients. The Mwb log-area coefficients are then converted to Mwb area coefficients before generating the wideband parcors.
Owner:NUANCE COMM INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products