Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

116779 results about "Data transmission" patented technology

Data transmission (also data communication or digital communications) is the transfer of data (a digital bitstream or a digitized analog signal) over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication channels, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.

Portable remote patient telemonitoring system

A system and method for monitoring vital signs and capturing data from a patient remotely using radiotelemetry techniques. The system is characterized by a cordless, disposable sensor band with sensors form measuring full waveform ECG, full waveform respiration, skin temperature, and motion, and transmission circuitry for the detection and transmission of vital signs data of the patient. A small signal transfer unit that can either be worn by the patient, e.g., on his or her belt, or positioned nearby receives data from the sensor band, which it then forwards by e.g., radio transmission to a base station that can be located up to 60 meters away. The base station receives data transmissions from the signal transfer unit and is designed to connect to conventional phone lines for transferring the collected data to a remote monitoring station. The base station may also capture additional clinical data, such as blood pressure data, and to perform data checks. Patient safety is enhanced by the ability of the base station to compare clinical data, e.g., ECG, against given profiles and to mark events when appropriate or when the base station is programmed to do so. Such events are indicated to the physician and could be indicated to the patient by reverse transmission to the signal transfer unit. A remote monitoring station allows the presentation and review of data (including events) forwarded by the sensor band. ECG analysis software and a user-friendly graphical user interface are provided to remotely analyze the transmitted data and to permit system maintenance and upkeep. The system of the invention has useful application to the collection of patient clinical data during drug trials and medical testing for regulatory approvals as well as management of patients with chronic diseases.

Gentle touch surgical instrument and method of using same

A surgical grasper is provided. The grasper comprises a handle, two jaws operably connected to the handle, which jaws can be actuated by the handle, and a sensor. A surgical grasper for use in robotic surgery is also provided. The grasper comprises a shaft, two jaws at a distal end of the shaft, which jaws can be actuated in response to a robot command, and a sensor. A method for measuring an amount of force being applied by a jaw of a grasper is also provided. The method comprises the steps of: providing a grasper comprising a handle and two jaws operably connected to the handle, which jaws can be actuated by the handle; providing a sensor on the grasper; and, providing for measuring an amount of force being applied to the sensor. A method for measuring an amount of force being applied by a jaw of a grasper for use in robotic surgery is also provided. The method comprises the steps of: providing a grasper for use in robotic surgery, the grasper comprising a shaft and two jaws at a distal end of the shaft, which jaws can be actuated responsive to a robot command; providing a sensor; and, providing for measuring an amount of force being applied to the sensor. A surgical feedback system is also provided. The surgical feedback system comprises a surgical grasper capable of taking a force measurement and a data concentrator coupled to the grasper via a wired or wireless interface using a first data transmission protocol with internal storage. A method for obtaining surgical feedback is also provided. The method comprises the steps of: providing a surgical grasper capable of taking a force measurement; and, providing a data concentrator coupled to the grasper via a wired or wireless interface using a first data transmission protocol with internal storage.

Apparatus for energizing a remote station and related method

Apparatus for remote interaction with an object of interest includes a remote station for obtaining information from the object of interest, a base station for transmitting energy in space to and communicating with the remote station and the remote station having conversion means for energizing the remote station responsive to receipt of the transmitted energy. The energy may be of any suitable type including RF power, light, acoustic, magnetic energy or other form of space transmitted or "radiant" energy. The remote station does not have to contain a source of stored energy or a wired connection to a source of energy. The remote station receives the energy transmission and data transmission from the base station and transmits data to the base station. Microprocessor controllers may be provided for the base station and the remote station. The remote station may receive information from sensors and through one or more transponders sequentially communicate information to the base station. An associated method is provided. In other embodiments which are suited for use in miniaturized electronic chip systems, power enhancement and increased effective antenna size are provided. An electronic article containing a microchip having at least one antenna structured to communicate with an antenna remotely disposed with respect to the microchip formed therein and an associated method are provided.

Method for training a communication link between ports to correct for errors

A technique for training links in a computing system is disclosed. In one aspect, the technique includes configuring a first receiver in a first port using a first training sequence or a second training sequence; transmitting the second training sequence from the first port indicating the first receiver is configured; and receiving a second training sequence transmitted by a second port at the first port, the second training sequence transmitted by the second port indicating that a second receiver in the second port is configured. In a second aspect, the technique includes locking a communication link; handshaking across the locked link to indicate readiness for data transmission; transmitting information after handshaking across the locked link. And, in a third aspect, the technique includes transmitting a first training sequence from a first port and a second port; and synchronizing the receipt of the first training sequence at the first and second ports; transmitting a second training sequence from the first and second ports upon the synchronized receipt of the first training sequence at the first and second ports; and receiving the second training sequence transmitted by the first and second ports and the second and first ports, respectively, in synchrony.

Method and apparatus for controlling transmissions of a communications systems

In some aspects, each cell in the communications system can be designed to operate in accordance with a set of back-off factors that identify the reductions in peak transmit power levels for the channels associated with the back-off factors. The back-off factors are defined to provide the required power to a large percentage of the users while reducing the amount of interference. In some other aspects, the cells operate using an adaptive reuse scheme that allows the cells to efficiently allocate and reallocate the system resources to reflect changes in the system. A reuse scheme is initially defined and resources are allocated to the cells. During operation, changes in the operating conditions of the system are detected and the reuse scheme is redefined as necessary based on the detected changes. For example, the loading conditions of the cells can be detected, and the resources can be reallocated and/or the reuse scheme can be redefined. In yet other aspects, techniques are provided to efficiency schedule data transmissions and to assign channels to users. Data transmissions can be scheduled based on user priorities, some fairness criteria, system requirements, and other factors. Users are assigned to available channels based on a number of channel assignment schemes. Channel metrics are also provided, which can be used to prioritize users and for channel assignments.

System and method for locating and communicating with personnel and equipment in a facility

This invention provides a system and method for identifying, locating, authorizing by proximity and communicating with equipment and personnel in a facility that generally employs a series of limited range transceivers for location determination and a distributed wireless data network for data transfer. The system employs unique RF transceiver tags on personnel and equipment that are each uniquely identified and registered with a facility control application that oversees activities in the facility. The tags are tracked by RF communication based upon their proximity to one or more fixed-base networked access points and relays (which transfer location data by RF back to access points) within four range zones. Location data on all tags is uploaded periodically to a location server that interfaces with the facility control server. Tag data is monitored by the facility control server to track, authorize and deauthorize certain data transfers, movements and activities in accordance with rules established for each tag (or type of tag) within the facility control server's application. Wireless networking (WiFi, for example), in combination with the RF-derived location information, allows the facility control server to correlate and transmit data to staff in conjunction with location and proximity. WiFi can transmit authorizations, deauthorizations and general data based upon triggers established by proximity and location. Likewise, data can be transmitted over WiFi from readers etc. from personnel and equipment located and identified by the system.

Footwear Having Sensor System

A shoe has a sensor system operably connected to a communication port. Performance data is collected by the system and can be transferred for further use via the communication port. The shoe may contain an electronic module configured to gather data from the sensors. The module may also transmit the data to an external device for further processing. Users can use the collected data for a variety of different uses or applications.

Clustered file management for network resources

Methods for operating a network as a clustered file system is disclosed. The methods involve client load rebalancing, distributed Input and Output (I/O) and resource load rebalancing. Client load rebalancing refers to the ability of a client enabled with processes in accordance with the current invention to remap a path through a plurality of nodes to a resource. Distributed I/O refers to the methods on the network which provide concurrent input/output through a plurality of nodes to resources. Resource rebalancing includes remapping of pathways between nodes, e.g. servers, and resources, e.g. volumes/file systems. The network includes client nodes, server nodes and resources. Each of the resources couples to at least two of the server nodes. The method for operating comprising the acts of: redirecting an I/O request for a resource from a first server node coupled to the resource to a second server node coupled to the resource; and splitting the I/O request at the second server node into an access portion and a data transfer portion and passing the access portion to a corresponding administrative server node for the resource, and completing at the second server nodes subsequent to receipt of an access grant from the corresponding administrative server node a data transfer for the resource. In an alternate embodiment of the invention the methods may additionally include the acts of: detecting a change in an availability of the server nodes; and rebalancing the network by applying a load balancing function to the network to re-assign each of the available resources to a corresponding available administrative server node responsive to the detecting act.

Energy harvesting computer device in association with a communication device configured with apparatus for boosting signal reception

ActiveUS20130157729A1Improve consumer electronics hybrid consumer electronics performanceLow densityMaterial nanotechnologyEnergy efficient ICTCellular telephoneCommunication device
Disclosed embodiments comprise an energy harvesting computer device in association with a communication device comprising interactive user interface operatively configured with CMOS multiple antennas on chip for boosting signal receptions and for providing faster data transmission speed. Disclosed embodiment encompasses three modes of communications—the Cell phone, wireless Internet applications, and Global communication and media information. Embodiments provide communication apparatus operable to enhance mobile communication efficiency with touch sensitive display comprising energy harvesting platform in communication with a charging circuit board configured with memories, processors, sensors, and modules. Embodiments further provide a gaming device, a wireless media device configured with touch pads comprising sensors being embedded in silicon substrate and fused in nano-fiber/microfiber material having excellent electrical characteristics. Certain embodiments provide communication apparatus configured for voice enabled applications comprising human voice auditory operable to convert text into voice auditory and/or voice auditory into text applications.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products