Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

18838 results about "Miniaturization" patented technology

Miniaturization (Br.Eng.: Miniaturisation) is the trend to manufacture ever smaller mechanical, optical and electronic products and devices. Examples include miniaturization of mobile phones, computers and vehicle engine downsizing. In electronics, Moore's law, which was named after Intel co-founder Gordon Moore, predicted that the number of transistors on an integrated circuit for minimum component cost doubles every 18 months. This enables processors to be built in smaller sizes.

Apparatus for energizing a remote station and related method

Apparatus for remote interaction with an object of interest includes a remote station for obtaining information from the object of interest, a base station for transmitting energy in space to and communicating with the remote station and the remote station having conversion means for energizing the remote station responsive to receipt of the transmitted energy. The energy may be of any suitable type including RF power, light, acoustic, magnetic energy or other form of space transmitted or "radiant" energy. The remote station does not have to contain a source of stored energy or a wired connection to a source of energy. The remote station receives the energy transmission and data transmission from the base station and transmits data to the base station. Microprocessor controllers may be provided for the base station and the remote station. The remote station may receive information from sensors and through one or more transponders sequentially communicate information to the base station. An associated method is provided. In other embodiments which are suited for use in miniaturized electronic chip systems, power enhancement and increased effective antenna size are provided. An electronic article containing a microchip having at least one antenna structured to communicate with an antenna remotely disposed with respect to the microchip formed therein and an associated method are provided.

Implantable medical device incorporating miniaturized circuit module

Implantable medical devices (IMDS) having RF telemetry capabilities for uplink transmitting patient data and downlink receiving programming commands to and from an external programmer having an improved RF module configured to occupy small spaces within the IMD housing to further effect the miniaturization thereof. An RF module formed of an RF module substrate and at least one IC chip and discrete components has a volume and dimensions that are optimally minimized to reduce its volumetric form factor. Miniaturization techniques include: (1) integrating inductors into one or more IC chips mounted to the RF module substrate; (2) mounting each IC chip into a well of the RF module substrate and using short bonding wires to electrically connect bond pads of the RF module substrate and the IC chip; and (3) surface mounting discrete capacitors over IC chips to reduce space taken up on the RF module substrate. The integrated inductors are preferably fabricated as planar spiral wound conductive traces formed of high conductive metals to reduce trace height and width while maintaining low resistance, thereby reducing parasitic capacitances between adjacent trace side walls and with a ground plane of the IC chip. The spiral winding preferably is square or rectangular, but having truncated turns to eliminate 90° angles that cause point-to-point parasitic capacitances. The planar spiral wound conductive traces are further preferably suspended over the ground plane of the RF module substrate by micromachining underlying substrate material away to thereby reduce parasitic capacitances.

Apparatus and method for locating, tracking, controlling and recognizing tagged objects using active RFID technology.

The present invention is directed to a miniaturized apparatus to locate, track, recognize and control objects using miniature RF circuits that are programmed as an active tag or as one of several embodiments of a controller, including one small enough to be incorporated into a personal object, like a ring. In its simplest embodiment, a portable or wearable controller communicates wirelessly with a tag secured to a surface, analogously to a car remote—push button, receive a signal from tag or back at the controller, to locate tagged object. In more complex forms, the tag can be integrated into objects or connected to a network. One controller can manage a plurality of tags. The basic platform of tag and controller can be built up to create a sophisticated area control with environmental sensors, inventory functions, tracking individuals and allowing or denying access, operating objects like doors and lights, and creating supporting ambient security with checks and balances between tags and controllers on people and their possessions, such as baggage at an airport. Arrays of tag or controllers extend the wireless range to accommodate large structures and areas. This novel system is self-contained, with a low power protocol to give long battery life time and does not require internet or GPS to perform its functions.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products