Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

26431 results about "Conductor Coil" patented technology

An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil, spiral or helix. Electromagnetic coils are used in electrical engineering, in applications where electric currents interact with magnetic fields, in devices such as electric motors, generators, inductors, electromagnets, transformers, and sensor coils.

Implantable medical device incorporating miniaturized circuit module

Implantable medical devices (IMDS) having RF telemetry capabilities for uplink transmitting patient data and downlink receiving programming commands to and from an external programmer having an improved RF module configured to occupy small spaces within the IMD housing to further effect the miniaturization thereof. An RF module formed of an RF module substrate and at least one IC chip and discrete components has a volume and dimensions that are optimally minimized to reduce its volumetric form factor. Miniaturization techniques include: (1) integrating inductors into one or more IC chips mounted to the RF module substrate; (2) mounting each IC chip into a well of the RF module substrate and using short bonding wires to electrically connect bond pads of the RF module substrate and the IC chip; and (3) surface mounting discrete capacitors over IC chips to reduce space taken up on the RF module substrate. The integrated inductors are preferably fabricated as planar spiral wound conductive traces formed of high conductive metals to reduce trace height and width while maintaining low resistance, thereby reducing parasitic capacitances between adjacent trace side walls and with a ground plane of the IC chip. The spiral winding preferably is square or rectangular, but having truncated turns to eliminate 90° angles that cause point-to-point parasitic capacitances. The planar spiral wound conductive traces are further preferably suspended over the ground plane of the RF module substrate by micromachining underlying substrate material away to thereby reduce parasitic capacitances.

Thin film write head with interlaced coil winding and method of fabrication

The preferred embodiment of the present invention provides a write head having an interlaced conductor coil winding and method of fabrication. The interlaced winding of the present invention may have alternating turns of a first and a second coil. In the preferred embodiment, the side walls of successive coil turns are separated by an ultra thin inorganic insulation which defines the distance between successive turns of the first and second coil. In one method of fabrication, a conductive seed layer is deposited on a generally planar insulative surface, a resist mask is formed on the seed layer, and a conductive material deposited on the exposed seed layer to form the turns of the first coil. The masked portions of the seed layer are removed, after resist mask removal, to electrically isolate the turns of the first coil. The inorganic insulation may be formed in a layer conformal with the first coil. The second coil is formed between the turns of the first coil. A seed layer and mask may be used to facilitate second coil deposition. Etching, or planarization, may be used to electrically isolate the turns of the second coil. A capping layer may be formed over any exposed conductor material to insulate the winding from an upper pole structure or other overlying structure. Embodiments of the present invention may have multiple layers of conductor winding having some conventional, or all interlaced coil structure.

Wind turbine

InactiveUS7042109B2Improve efficiencyCost per unit power generationWindingsWind motor controlRotational energyAir core
A wind turbine for generating electrical power from wind energy includes a turbine rotor mounted for rotation in wind, and having multiple blades for converting energy in the wind into rotational energy. A generator is coupled with said turbine rotor such that said turbine rotor drives said generator. The generator has a stationary air core armature that is located in a magnetic airgap between two generator rotor portions. The generator rotor portions have circumferential arrays of multiple alternating polarity permanent magnets attached to ferromagnetic back irons such that the permanent magnets drive magnetic flux back and forth between each rotor portion and through the stationary air core armature. The stationary air core armature has multiple phase windings of multiple individually insulated strand conductor wire that is wound with two separate portions including an active length portion and an end turn portion. The end turn portion is located outside the magnetic airgap and traverses predominately circumferentially, and the active length portion is located in the magnetic airgap and traverses predominately non-circumferentially and perpendicular to the direction of the magnetic airgap. The end turn portion has a thickness that is greater than the thickness of said active length portion in the direction of said magnetic airgap. AC voltage is induced in the multiple phase windings as the turbine rotor rotates.

Inductive RF plasma source with external discharge bridge

An RF ICP source having a housing with a flanged cover. The interior of the housing serves for confining plasma generated by the plasma source. The cover has at least two openings which are connected by a hollow C-shaped bridge portion which is located outside the housing. The hollow C-shaped bridge portion is embraced by an annular ferrite core having a winding connected to an electric power supply source for generating a discharge current which flows through the bridge portion and through the interior of the housing. The discharge current is sufficient for inducing plasma in the interior of the housing which is supplied with a gaseous working medium. The power source operates on a relatively low frequency of 60 KHz or higher and has a power from several watt to several kilowatt. In order to provide a uniform plasma distribution and uniform plasma treatment, the cover may support a plurality of bridges. Individual control of the inductors on each bridge allows for plasma redistributing. The housing of the working chamber can be divided into two section for simultaneous treatment of two objects such as semiconductor substrates. A plate that divides the working chamber into two sections may have ferrite cores built into the plate around the bridges. In another embodiment, the flow of gaseous working medium is supplied via a tube connected to the bridge portion of the source.

Embolectomy capture sheath

InactiveUS20050187570A1Variable flexibilityVariable kink-resistanceGuide needlesCannulasPlastic materialsActuator
An access device adapted for use in a body conduit is provided comprising an outer tube having a proximal end and a distal end, an inner tube disposed coaxially with the outer tube having a proximal end and a distal end, and an expandable portion having a first end coupled to the distal end of the outer tube and a second end coupled to the distal end of the inner tube. The outer tube and the inner tube are movable relative to each other to transform the expandable portion between a low-profile state and a high-profile state, and at least one of the outer and inner tubes comprises a wire-reinforced tube or is formed from a plurality of individual, discrete, generally ring-shaped elements arranged in series and fused or bonded together to form a continuous tubular structure. The access device may further comprise an actuator coupled to one of the outer and inner tubes and being movable relative to the other of the outer and inner tubes to transform the expandable portion between the low- and high-profile states. The expandable portion may be formed with a braid material and has the shape of a cone. The ring-shaped elements may be formed of a thermoplastic or a thermoset material, and they may include at least one of plastic rings, metallic rings, un-reinforced plastic rings and metal reinforced plastic rings assembled along the length of at least one of the tubes to provide variable flexibility and kink-resistance. The wire-reinforced tube is formed by coating a wire with a plastic material, wrapping the coated wire around a mandrel forming a plurality of windings, and heating the wound coated wire until the plastic material melts and bonds the windings forming the wire-reinforced tube.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products