Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2023results about "Heads using thin films" patented technology

Thin film write head with interlaced coil winding and method of fabrication

The preferred embodiment of the present invention provides a write head having an interlaced conductor coil winding and method of fabrication. The interlaced winding of the present invention may have alternating turns of a first and a second coil. In the preferred embodiment, the side walls of successive coil turns are separated by an ultra thin inorganic insulation which defines the distance between successive turns of the first and second coil. In one method of fabrication, a conductive seed layer is deposited on a generally planar insulative surface, a resist mask is formed on the seed layer, and a conductive material deposited on the exposed seed layer to form the turns of the first coil. The masked portions of the seed layer are removed, after resist mask removal, to electrically isolate the turns of the first coil. The inorganic insulation may be formed in a layer conformal with the first coil. The second coil is formed between the turns of the first coil. A seed layer and mask may be used to facilitate second coil deposition. Etching, or planarization, may be used to electrically isolate the turns of the second coil. A capping layer may be formed over any exposed conductor material to insulate the winding from an upper pole structure or other overlying structure. Embodiments of the present invention may have multiple layers of conductor winding having some conventional, or all interlaced coil structure.
Owner:WESTERN DIGITAL TECH INC

Thin film write head with improved laminated flux carrying structure and method of fabrication

The present invention provides a thin film write head having an improved laminated flux carrying structure and method of fabrication. The preferred embodiment provides laminated layers of: high moment magnetic material, and easily aligned high resistivity magnetic material. In the preferred embodiment, the easily aligned laminating layer induces uniaxial anisotropy, by exchange coupling, to improve uniaxial anisotropy in the high moment material. This allows deposition induced uniaxial anisotropy by DC magnetron sputtering and also provides improved post deposition annealing, if desired. It is preferred to laminate FeXN, such as FeRhN, or other crystalline structure material, with an amorphous alloy material, preferably Co based, such as CoZrCr. In the preferred embodiment, upper and lower pole structures may both be laminated as discussed above. Such laminated structures have higher Bs than structures with insulative laminates, and yokes and pole tips and may be integrally formed, if desired, because flux may travel along or across the laminating layers. The preferred embodiment of the present invention improves soft magnetic properties, reduces eddy currents, improves hard axis alignment while not deleteriously affecting the coercivity, permeability, and magnetostriction of the structure, thus allowing for improved high frequency operation.
Owner:WESTERN DIGITAL TECH INC +1

Top spin valve with improved seed layer

InactiveUS6687098B1Improved exchange bias fieldNanostructure applicationNanomagnetismEngineeringHigh resistivity
The present invention provides an improved top spin valve and method of fabrication. In the preferred embodiment of the top spin valve of the present invention, a seed layer is formed of non-magnetic material having the elements Ni and Cr. In the preferred embodiments, the seed layer material has an ion milling rate comparable to that of the free layer material. This allows free layer sidewalls to be formed with shorter tails, improving free layer-to-magnetic bias layer junction, thus improving free layer domain structure and track width. In one embodiment, the seed layer may have NiFeCr, with Cr from about 20% to 50%. In another embodiment, the seed layer may have NiCr, with about 40%. Some embodiments may have the seed layer formed on an optional Ta pre-seed layer. Such embodiments provide an improved fcc (111) texture particularly for NiFe and for NiFe/CoFe free layers grown on a seed layer improving spin valve performance, and especially in embodiments having very thin NiFe free layers, ultra thin NiFe free layers, and free layers without NiFe, such as a free layer of CoFe. Such a seed layer can improve AFM pinning layer texture to improve the exchange bias, thus providing better thermal stability. Such a seed layer also provides high resistivity and can improve the magnetostriction of adjacent NiFe free layer material or improve the soft properties of an adjacent CoFe free layer.
Owner:WESTERN DIGITAL TECH INC

Low resistance coil structure for high speed writer

The present invention provides a thin film write head having an upper and lower pole structures and conductor turns forming a winding for generating magnetic flux. The conductor is formed with a non-planar top surface. The winding of the present invention may be formed of lower and upper turns. The upper turns may be formed with a non-planar top surface, a non-planar bottom surface, or both. It is preferred that the bottom surface of the upper conductor turns be coherent with the non-planar top surface of the lower conductor turns. The non-planar top surface may be formed by removing corners formed during deposition between a generally planar top surface and abutting side walls. The corners may be removed by ion milling to form the non-planar top surface. The conductor may be copper with the non-planar top surface having sloping facets. The thin film write head of the present invention may be utilized to provide an improved data storage and retrieval apparatus. The preferred embodiment provides reduced coil resistance thereby reducing Johnson Thermal Noise and power dissipation. It also allows for reduced yoke length and reduced stack height while providing low apex angles to expand and improve yoke material deposition thereby improving head response and operational frequency.
Owner:WESTERN DIGITAL TECH INC

Thin film write head with improved yoke to pole stitch

InactiveUS6490125B1Improve magnetic propertiesWithout sacrificing yoke material property and flux flowConstruction of head windingsHeads using thin filmsAir bearing surfaceEngineering
The present invention provides an write head having an improved upper pole tip-to-yoke stitch. The upper pole tip is formed having an open faced sloping surface at an end of the pole tip distal from an air bearing surface. Preferably the angle of the sloping surface is about 30 degrees. The sloping surface provides a shallow angle for depositing the yoke material over which improves the magnetic properties of the yoke material, particularly in the case of sputtered high moment magnetic materials, and improves the flux flow path through the yoke. As such, the present invention allows conductor coils to be located closer to the air bearing surface without sacrificing yoke material properties and flux flow. The upper pole tip may have a back portion which is formed over an insulation layer located between a write gap layer and a conductor layer. Preferably the insulation layer and the conductor layer or layers are formed having sloping edges with shallow angles of about 30 degrees. An advantage of the present invention is that it allows the yoke and the yoke-to-pole tip stitch to be recessed from the air bearing surface, if desired, to prevent the yoke or yoke-to-pole stitch from inadvertently writing to the media.
Owner:WESTERN DIGITAL TECH INC

Ultra-short yoke and ultra-low stack height writer and method of fabrication

The present invention provides an improved thin film write head and method of fabrication capable of providing an ultra-short yoke and / or an ultra-low conductor winding stack. The present invention reduces yoke length and stack height by forming the conductor winding in a trench etched from an insulation layer, preferably formed of an inorganic insulation material. A thin resist mask is used to define the width of the trench while the etch process defines the depth. Preferably, the insulation layer is formed on a different inorganic insulation material to control the etch process, thus, the conductor winding may be formed on the underlying layer. The conductor winding preferably is formed by depositing conductor material so that it fills the trench and then planarizing, such as by chemical mechanical polish, to remove conductor material deposited outside the trench. An organic insulation layer, such as cured photoresist, may be deposited on the planarized surface of the conductor winding to insulate it from an overlying yoke. This overlying organic insulation layer may also define the apex angle of the head. The present invention may have multiple layers of conductor winding. The subsequent layers of conductor may be formed similar to the first layer, or may be formed with conventional photoresist processes and structures. The present invention may utilize any known pole structure or material.
Owner:WESTERN DIGITAL TECH INC

Ultra-short yoke and ultra-low stack height writer and method of fabrication

The present invention provides an improved thin film write head and method of fabrication capable of providing an ultra-short yoke and / or an ultra-low conductor winding stack. The present invention reduces yoke length and stack height by forming the conductor winding in a trench etched from an insulation layer, preferably formed of an inorganic insulation material. A thin resist mask is used to define the width of the trench while the etch process defines the depth. Preferably, the insulation layer is formed on a different inorganic insulation material to control the etch process, thus, the conductor winding may be formed on the underlying layer. The conductor winding preferably is formed by depositing conductor material so that it fills the trench and then planarizing, such as by chemical mechanical polish, to remove conductor material deposited outside the trench. An organic insulation layer, such as cured photoresist, may be deposited on the planarized surface of the conductor winding to insulate it from an overlying yoke. This overlying organic insulation layer may also define the apex angle of the head. The present invention may have multiple layers of conductor winding. The subsequent layers of conductor may be formed similar to the first layer, or may be formed with conventional photoresist processes and structures. The present invention may utilize any known pole structure or material.
Owner:WESTERN DIGITAL TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products