Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7698results about "Electrical transducers" patented technology

Wearable communication platform

An wearable communications garment that includes one or more user-selectable inputs integrated into the garment. A sartorial communications apparatus may include a flexible material that is worn (e.g., as an undergarment) by the user and includes one or more interactive sensors that may be manually activated by a user, even through one or more intervening layers of clothing. The apparatus may also include one or more additional body sensors configured to sense a user's position, movement, and / or physiological status. The sensor(s) may be connected via a conductive trace on the garment to a sensor module for analysis and / or transmission. Methods of manufacturing the garments as well as methods of using the garments are also described.
Owner:L I F E

System and method for improving speech recognition accuracy in a work environment

Apparatus and method that improves speech recognition accuracy, by monitoring the position of a user's headset-mounted speech microphone, and prompting the user to reconfigure the speech microphone's orientation if required. A microprocessor or other application specific integrated circuit provides a mechanism for comparing the relative transit times between a user's voice, a primary speech microphone, and a secondary compliance microphone. The difference in transit times may be used to determine if the speech microphone is placed in an appropriate proximity to the user's mouth. If required, the user is automatically prompted to reposition the speech microphone.
Owner:VOCOLLECT

Method and system for mitigating delay in receiving audio stream during production of sound from audio stream

A communication component modifies production of an audio waveform at determined modification segments to thereby mitigate the effects of a delay in processing and / or receiving a subsequent audio waveform. The audio waveform and / or data associated with the audio waveform are analyzed to identify the modification segments based on characteristics of the audio waveform and / or data associated therewith. The modification segments show where the production of the audio waveform may be modified without substantially affecting the clarity of the sound or audio. In one embodiment, the invention modifies the sound production at the identified modification segments to extend production time and thereby mitigate the effects of delay in receiving and / or processing a subsequent audio waveform for production.
Owner:VOCOLLECT

Methods for producing ultrasonic waveguides having improved amplification

Methods for manufacturing ultrasonic waveguides having improved velocity gain are disclosed. Additionally, methods for manufacturing ultrasonic medical devices including the ultrasonic waveguides are disclosed. Specifically, the ultrasonic waveguides comprises a first material having a higher acoustic impedance and a second material having a lower acoustic impedance.
Owner:KIMBERLY-CLARK WORLDWIDE INC

Combination tissue pad for use with an ultrasonic surgical instrument

InactiveUS20090223033A1Effectively smooths out abusive tissue forceElectrical transducersSurgical forcepsDistal portionBiological activation
An ultrasonic clamp coagulator assembly that is configured to permit selective cutting, coagulation and clamping of tissue during surgical procedures. An elongated portion of the instrument can be configured for endoscopic applications and has an outside diameter of less than 6 mm. The construction includes a clamping mechanism, including a clamp arm pivotally mounted at the distal portion of the instrument, which is specifically configured to create a desired level of tissue clamping forces, exceeding 4 pounds when the trigger is fully closed. The clamping mechanism includes a two-piece pad design and pad material that enables the higher tissue clamping forces and a force-limiting mechanism that effectively smooths out abusive tissue forces. The assembly also features hand activation configured to provide an ergonomical grip and operation for the surgeon. Hand switches are placed in the range of the natural swing of the surgeon's thumb, whether gripping the surgical instrument right-handed or left handed.
Owner:CILAG GMBH INT +1

Method and system for hearing device fitting

The method for manufacturing an adjusted hearing device (1b) comprises the step of using first data (16a) obtained from a first hearing device (1a) adjusted to the preferences of a first user (5a) for adjusting a second hearing device (1b) of a second user (5b). This may comprise converting for compensating for differences between a hearing loss of said first user and a hearing loss of said second user and / or converting for compensating for differences between said first hearing device and said second hearing device. Preferably, said first data comprise fitting data (16). The system comprises a first hearing device (1a), a second hearing device (1b) and a converting system (15) operationally connectable to said first and said second hearing devices, adapted to converting first data (16a) from said first hearing device into second data (16b) for adjusting said second hearing device. Preferably, the system also comprises a communication link (7) between said first hearing device and said second hearing device. The invention allows different hearing device users to share their fitting data.
Owner:PHONAK

Method to fabricate side shields for a magnetic sensor

A method for fabricating magnetic side shields for an MR sensor of a magnetic head. Following the deposition of MR sensor layers, a first DLC layer is deposited. Milling mask layers are then deposited, and outer portions of the milling mask layers are removed such that a remaining central portion of the milling mask layers is formed having straight sidewalls and no undercuts. Outer portions of the sensor layers are then removed such that a relatively thick remaining central portion of the milling mask resides above the remaining sensor layers. A thin electrical insulation layer is deposited, followed by the deposition of magnetic side shields. A second DLC layer is deposited and the remaining mask layers are then removed utilizing a chemical mechanical polishing (CMP) liftoff step. Thereafter, the first DLC layer and the second DLC layer are removed and a second magnetic shield layer is then fabricated thereabove.
Owner:WESTERN DIGITAL TECH INC

Method of manufacturing vibrating micromechanical structures

A method for fabrication of single crystal silicon micromechanical resonators using a two-wafer process, including either a Silicon-on-insulator (SOI) or insulating base and resonator wafers, wherein resonator anchors, a capacitive air gap, isolation trenches, and alignment marks are micromachined in an active layer of the base wafer; the active layer of the resonator wafer is bonded directly to the active layer of the base wafer; the handle and dielectric layers of the resonator wafer are removed; viewing windows are opened in the active layer of the resonator wafer; masking the single crystal silicon semiconductor material active layer of the resonator wafer with photoresist material; a single crystal silicon resonator is machined in the active layer of the resonator wafer using silicon dry etch micromachining technology; and the photoresist material is subsequently dry stripped.
Owner:HONEYWELL INT INC

Damascene process for fabricating poles in recording heads

A method and system for manufacturing a pole for a magnetic recording head. The method and system include providing an insulator and fabricating at least one hard mask on the insulator. The at least one hard mask has an aperture therein. The method and system also include removing a portion of the insulator to form a trench within the insulator. The trench is formed under the aperture. The method and system further include depositing at least one ferromagnetic material. The pole includes a portion of the ferromagnetic material within the trench.
Owner:WESTERN DIGITAL TECH INC

Cordless Hand-Held Ultrasonic Cautery Cutting Device

ActiveUS20110167619A1Alter functionAlter performanceElectrical transducersSurgeryUltrasonic sensorHand held
An ultrasonic surgical assembly includes an ultrasonic transducer operable to convert a received motional current into a movement of a cutting blade of an ultrasonic waveguide, a measurement circuit connected in a parallel configuration with the ultrasonic transducer, a variable power source operable to supply current through a set of connection points to the parallel configuration and thereby create the motional current in the ultrasonic transducer, and a current controller operable to regulate the motional current by varying an output of the variable power source, thereby maintaining a substantially constant rate of movement of the cutting blade across a variety of cutting loads.
Owner:COVIDIEN AG

Method for manufacturing a shielded pole magnetic head for perpendicular recording

A method of making a perpendicular magnetic recording head for use in a data storage device includes forming a first pole layer, a second pole layer, a third pole layer, and a shield layer of a write section. The first pole layer, second pole layer, third pole layer, and shield layer are formed without using a chemical mechanical polishing process. The method next includes concurrently trimming the shield layer and a write pole that is defined by the third pole layer to a predetermined track width. In the trimming step, the shield layer is used as a mask for the write pole.
Owner:WESTERN DIGITAL TECH INC

Double hard-mask mill back method of fabricating a near field transducer for energy assisted magnetic recording

A method of forming a near field transducer (NFT) for energy assisted magnetic recording is disclosed. A structure comprising an NFT metal layer and a first hardmask layer over the NFT metal layer is provided A first patterned hardmask is formed from the first hardmask layer, the first patterned hardmask disposed over a disk section and a pin section of the NFT to be formed. An etch process is performed on the NFT metal layer via the first patterned hardmask, the etch process forming the NFT having the disk section and the pin section.
Owner:WESTERN DIGITAL TECH INC

Garments having stretchable and conductive ink

Methods of forming garments having one or more stretchable conductive ink patterns. Described herein are method of making garments (including compression garments) having one or more highly stretchable conductive ink pattern formed of a composite of an insulative adhesive, a conductive ink, and an intermediate gradient zone between the adhesive and conductive ink. The conductive ink typically includes between about 40-60% conductive particles, between about 30-50% binder; between about 3-7% solvent; and between about 3-7% thickener. The stretchable conductive ink patterns may be stretched more than twice their length without breaking or rupturing.
Owner:L I F E

Reducing thermal protrusion of a near field transducer in an energy assisted magnetic recording head

Methods of fabricating an energy-assisted magnetic recording (EAMR) head to compensate for a heat-induced protrusion of a near field transducer formed therein are disclosed. The methods can include applying optical power to the near field transducer to generate heat therein. The near field transducer protrudes beyond an air bearing surface of the EAMR head by the generated heat. The methods can further include removing a protruded portion of the near field transducer.
Owner:WESTERN DIGITAL TECH INC

Inductive writer with flat top pole and pedestal defined zero throat

A disk drive write head (10) having a bottom pole (60), a first insulation layer (64) formed on the bottom pole (60), a coil (38) formed on the first insulation layer (64), a second insulation layer (66) formed on the coil (38), a write gap layer (76) formed on the second insulation layer (66), and a top pole (12) formed on the write gap layer (76), where the top pole (12) is substantially flat.A second embodiment (100) is described which is produced by a damascene process.
Owner:WESTERN DIGITAL TECH INC

Method and system for providing a transducer having dual, ABS recessed auxiliary poles on opposite sides of a main pole with non-magnetic spacer adjoining back portion of main pole and positioned between auxiliary poles

A method and system for providing a magnetic recording head is described. The magnetic recording head has an ABS configured to reside in proximity to a media during use. The magnetic recording head includes a main pole, first and second auxiliary poles, a backgap, a nonmagnetic spacer, and at least one coil. The main pole includes a pole tip occupying a portion of the ABS and a back edge distal from the ABS. Each auxiliary pole has a front recessed from the ABS and a back portion. A portion of the main pole distal from the ABS resides between the auxiliary poles. The auxiliary poles are magnetically coupled with the main pole. The backgap magnetically couples the back portions of the auxiliary poles. The nonmagnetic spacer adjoins the back edge of the main pole and is between the auxiliary poles. The coil(s) energize the main pole.
Owner:WESTERN DIGITAL TECH INC

Method for providing an electronic lapping guide corresponding to a near-field transducer of an energy assisted magnetic recording transducer

A method fabricates a transducer having an air-bearing surface (ABS). The method includes providing at least one near-field transducer (NFT) film and providing an electronic lapping guide (ELG) film substantially coplanar with a portion of the at least one NFT film. The method also includes defining a disk portion of an NFT from the portion of the at least one NFT film and at least one ELG from the ELG film. The disk portion corresponds to a critical dimension of the NFT from an ABS location. The method also includes lapping the at least one transducer. The lapping is terminated based on a signal from the ELG.
Owner:WESTERN DIGITAL TECH INC

Method for fabricating a magnetic recording transducer having side shields

A method provides a magnetic transducer that includes an underlayer and a nonmagnetic layer on the underlayer. The method includes providing a plurality of trenches in the nonmagnetic layer. A first trench of corresponds to a main pole, while at least one side trench corresponds to at least one side shield. The method also includes providing mask covering the side trench(es) and providing the main pole. At least a portion of the main pole resides in the first trench. The method also includes removing at least a portion of the nonmagnetic layer residing between the side trench(es) and the main pole. The method also includes providing at least one side shield. The shield(s) extend from at least an air-bearing surface location to not further than a coil front location.
Owner:WESTERN DIGITAL TECH INC

Method for manufacturing a perpendicular magnetic recording head

A method and system for manufacturing a perpendicular magnetic recording head is disclosed. The method and system include providing a chemical mechanical planarization (CMP) uniformity structure having an aperture therein and forming a perpendicular magnetic recording pole within the aperture. The CMP uniformity structure may include a CMP barrier layer. The method and system further include fabricating an insulator after formation of the perpendicular magnetic recording pole and performing a CMP to remove a portion of the insulator, expose a portion of the perpendicular magnetic recording pole and planarize an exposed surface of the perpendicular magnetic recording head.
Owner:WESTERN DIGITAL TECH INC

Write head having a recessed, magnetic adjunct pole formed atop a main pole, and method of making the same

A read / write head and method of making the same are used in a data storage system, such as a disk drive, for perpendicular magnetic recording of data. The head employs a two-layer pole design with a main pole made of sputtered high moment magnetic material, and an adjunct pole made of electroplated soft magnetic film. The main pole is used to write data onto the medium, and is formed over the write coil. The adjunct pole is substantially recessed from the air bearing surface and is formed over the main pole. The present head design significantly enhances the magnetic write field, and substantially reduces side-writing that result in accidental erasure of data in adjacent tracks on the magnetic recording medium.
Owner:WESTERN DIGITAL TECH INC

Method of forming a fully wrapped-around shielded PMR writer pole

InactiveUS8533937B1Reduce and eliminate shadowing effectGood deposition coverageElectrical transducersManufacture head surfaceEngineeringNon magnetic
A method or forming a wrapped-around shielded perpendicular magnetic recording writer pole is disclosed. A structure comprising a leading shield layer and an intermediate layer disposed over the leading shield layer is provided, the intermediate layer comprising a pole material and a dielectric material. A trench is formed in the dielectric material. A non-magnetic layer in the trench is removed via an ion beam etching process. A seed layer is deposited in the trench and over the pole material. A magnetic material comprising a side shield layer is deposited on at least a portion of the seed layer.
Owner:WESTERN DIGITAL TECH INC

Method for forming a hard bias structure in a magnetoresistive sensor

A method for forming a hard bias structure in a magnetoresistive sensor is disclosed. A magnetoresistive sensor having a soft magnetic bias layer, spacer layer, and a magnetoresistive layer, is formed over a substrate having a gap layer. A mask is formed over a portion of the magnetoresistive sensor structure to define a central region. The masked structure is ion milled to remove portions not shielded by the mask, to form the central region with sloped sides, and to expose a region of the gap layer laterally adjacent the sloped sides. A first underlayer is deposited onto at least the sloped sides at a high deposition angle. A second underlayer is deposited to at least partially overlap the first underlayer, and at a first lower deposition angle. A hard bias layer is deposited over at least a portion of the second underlayer, and at a second lower deposition angle.
Owner:WESTERN DIGITAL TECH INC

Method and system for providing an NFT using a sacrificial NFT structure

A method and system provides a near-field transducer (NFT) for an energy assisted magnetic recording (EAMR) transducer. The method and system include forming a sacrificial NFT structure having a shape a location corresponding to the NFT. A dielectric layer is deposited. A portion of the dielectric layer resides on the sacrificial NFT structure. At least this portion of the dielectric layer on the sacrificial structure is removed. The sacrificial NFT structure is removed, exposing an NFT trench in the dielectric layer. At least one conductive layer for the NFT is deposited. A first portion of the conductive layer(s) reside in the NFT trench. A second portion of the conductive layer(s) external to the NFT trench is removed to form the NFT.
Owner:WESTERN DIGITAL TECH INC

Method and system for optically coupling a laser with a transducer in an energy assisted magnetic recording disk drive

A method and system for providing an energy assisted magnetic recording (EAMR) head are described. The EAMR head includes a laser, a slider, and an EAMR transducer. The laser has a main emitter and at least one alignment emitter. The slider includes at least one alignment waveguide, at least one output device, and an air-bearing surface (ABS). The alignment waveguide(s) are aligned with the alignment emitter(s). The EAMR transducer is coupled with the slider and includes a waveguide aligned with main emitter. The waveguide is for directing energy from the main emitter toward the ABS.
Owner:WESTERN DIGITAL TECH INC

Method for modeling devices in a wafer

A method for modeling devices in a wafer comprises the step of providing the wafer comprising a first plurality of devices having a track width and a first stripe height, a second plurality of devices having the track width and a second stripe height, and a third plurality of devices having the track width and a third stripe height. The method further comprises the steps of measuring resistance values for the first, second and third plurality of devices to obtain a data set correlating a stripe height and a resistance value for each of the first, second and third plurality of devices, and estimating a linear relationship between resistance and inverse stripe height for the first, second and third plurality of devices based on the data set.
Owner:WESTERN DIGITAL TECH INC

Method of forming a magnetoresistive device

A method of forming a head comprises forming a write transducer on a wafer, cutting the wafer to produce a slider bar with a cut surface, and planarizing the cut surface of the slider bar. Forming the write transducer can include forming a first pole layer and forming a first pole pedestal layer over the first pole layer, where the first pole pedestal layer includes a tapered portion defined by a first end having a nose width less than a desired final nose width, and a second end having a zero throat width greater than the desired final nose width. Planarizing the cut surface of the slider bar exposes the first pole pedestal layer until a width thereof approximately equals the desired final nose width.
Owner:WESTERN DIGITAL TECH INC

Method and system for providing a magnetic head using a composite magnetic material in the recording transducer

A method and system for providing a magnetic transducer for recording to media is described. The method and system include providing a first pole, a main pole, at least one coil and at least one auxiliary pole. The main pole is for providing a magnetic field for recording to the media. The coil(s) are for energizing the main pole. The auxiliary pole is magnetically coupled with the main pole. The shield(s) are for magnetically isolating a portion of the magnetic transducer. At least one of the first pole, the auxiliary pole, and the at least one shield includes a composite magnetic material including a plurality of ferromagnetic grains in an insulating matrix.
Owner:WESTERN DIGITAL TECH INC

Method for providing an energy assisted magnetic recording (EAMR) head

A method and system for providing an energy assisted magnetic recording (EAMR) head are described. The method and system include providing a slider, an EAMR transducer coupled with the slider, and a top layer on the slider. The top layer includes a mirror well therein and has a substantially flat top surface. The method and system further includes providing a laser including a light-emitting surface and providing a mirror optically coupled with the laser. The laser is coupled to the top surface of the top layer external to the mirror well. The mirror has a bottom surface and a reflective surface facing the light-emitting surface of the laser. A portion of the bottom surface of the mirror is affixed to the top surface of the top layer. A portion of the mirror resides in the mirror well.
Owner:WESTERN DIGITAL TECH INC

Method and system for providing a magnetic recording transducer using a line hard mask

A method and system for fabricating a magnetic transducer is described. The transducer has a device region, a field region, and a magnetoresistive stack. The method and system include providing a hard mask on the magnetoresistive stack. The hard mask is inorganic and includes a sensor portion and a line frame. The sensor portion covers a first portion of the magnetoresistive stack corresponding to a magnetoresistive structure. The line frame covers a second portion of the magnetoresistive stack in the device region. The method and system include defining the magnetoresistive structure in a track width direction using the hard mask and providing at least one hard bias material after the magnetoresistive structure is defined. A first portion of the hard bias material(s) is substantially adjacent to the magnetoresistive structure in the track width direction. The method and system also include removing a second portion of the hard bias material(s).
Owner:WESTERN DIGITAL TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products