Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1725results about How to "High magnification" patented technology

Method and device for non destructive evaluation of defects in a metallic object

A device for non destructive evaluation of defects in a metallic object (2) by eddy currents, comprises a field emitter (3) for emitting an alternating electromagnetic field at a first frequency fi in the neighbourhood of the metallic object (2), and a magnetoresistive sensor (1) for detecting a response signal constituted by a return electromagnetic field which is re-emitted by eddy currents induced by the alternating electromagnetic field in the metallic object (2). The device further comprises: a driving circuit (230) for driving the magnetoresistive sensor (1) by a current at a second frequency fc which is different from the first frequency fi, so that the magnetoresistive sensor (1) acts as an in situ modulator; a detector for detecting a response signal between the terminals of the magnetoresistive sensor (1); a filter for filtering the response signal detected by the magnetoresistive sensor (1) to keep either the frequency sum (fi+fc) of the first and second frequencies or the frequency difference (fi+fc) of the first and second frequencies, and a processor for processing the filtered response signal and extract eddy current information on defects in the metallic object (2).
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

Composite hard carbon cathode material of lithium ion battery and preparation method thereof

The invention discloses a composite hard carbon cathode material of a lithium ion battery and a preparation method thereof, aiming at improving the first coulombic efficiency. In the composite hard carbon cathode material, a coating object is coated outside a hard carbon matrix, a precursor of the hard carbon matrix comprises a thermoplastic resin which forms the hard carbon matrix by pyrolysis, and a precursor of the coating object is an organic matter. The preparation method comprises the steps of curing, pyrolyzing, pulverizing and coating. Compared with the prior art, a curing agent and adopant are added to the resin for curing, the cured mixture is taken as a carbon source, and then the carbon source is pyrolyzed and coated to finally obtain the composite hard carbon cathode material; and the first reversible capacity of the obtained composite hard carbon cathode material is more than 455.2mAh/g and the first coulombic efficiency thereof is more than 79.4% in the case of 0.2C, thus the obtained composite hard carbon cathode material has high capacity and high first coulombic efficiency, meets the requirement of the lithium ion battery with high capacity, high multiplying power and excellent high and low temperature cycle performance on the charge-discharge performances of the cathode material, has low production cost and is suitable for industrial production.
Owner:JIXI BTR GRAPHITE IND PARK CO LTD +2

Doped graphene electrode material, macro preparation method and application of doped graphene electrode material

The invention relates to the field of graphene electrode materials, and in particular relates to a doped graphene electrode material, a macro preparation method as well as an application of the doped graphene electrode material in a high-capacity high-multiplying-power lithium ion battery. In the invention, graphene is taken as a raw material. The preparation method comprises the following steps: controlling the temperature rising speed rate through shielding gas; introducing gas containing nitrogen or boron elements in different concentrations at high temperature so as to realize the doping of heteroatoms of the graphene, and get the nitrogen or boron doped graphene; mixing the doped graphene, conductive carbon black and a bonding agent; adding a solvent; coating the mixture on a current collector after grinding; taking the mixture after drying, shearing and tabletting as a working electrode; adding electrolyte containing a lithium salt by taking a lithium plate as a counter electrode /reference electrode; assembling into a button-type lithium ion half-battery in a glove box; and carrying out constant current charge and discharge tests under the condition of high current density. According to the invention, the electrode stability of the material under the condition of high current density is improved, and the fact that the doped graphene has higher specific capacity and excellent cycle performance in a shorter time is realized.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Phosphate material having mesoporous structure for lithium secondary batteries and preparation method thereof

The invention relates to a phosphate material having a mesoporous structure for lithium secondary batteries and a preparation method thereof. The material having a mesoporous structure is secondary particles which have a mesoporous spherical or spheroid shape and are formed by the agglomeration of primary particles; the chemical composition of the material having the mesoporous structure is represented by the formula of LixAaMmBbPOzNn; the average particle diameter of the primary particles is 10nm to 1mum, the average particle diameter of the secondary particles is 100nm to 50mum, the average pore diameter of mesopores is 2 to 500nm; and the material having the mesoporous structure also comprises a layer of 2 to 100nm thick carbon coated outside the secondary particles and on the inner walls of the mesopores, wherein the content of the carbon accounts for 1 to 20 weight percent of the total weight of a substrate. The material is prepared by the steps of: firstly preparing pure-phase phosphate LiMPO4 or doped LiMPO4 sol; secondly, forming dry gel through heat treatment; and finally, forming the agglomerate secondary particles through sintering at high temperature. The phosphate material having the mesoporous structure can be directly used in secondary lithium batteries as an anode active material and can also be used by being mixed with the prior anode material as an additive. The material having the mesoporous structure can improve the rate performance and energy density of the prior anode material and batteries. The secondary lithium batteries containing the phosphate material having the mesoporous structure has high power density and high safety.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Feedback-Control Wearable Upper-Limb Electrical Stimulation Device

A feedback-control wearable upper-limb electrical stimulation device comprises a plurality of electrical stimulation electrodes (10), a plurality of myoelectric signal sensing elements (20), an electrical stimulation output unit (30), a myoelectric signal retrieval unit (35), a myoelectric signal operation unit (40), and a control module (50). Each electrical stimulation electrode (10) is adhered to or fixed in contact with a human trunk and applies an electrical stimulation signal to the neuromuscular system of the human trunk. Each myoelectric signal sensing element (20) is adhered to or fixed in contact with the human trunk at a corresponding position of the neuromuscular system of the human trunk where each electrical stimulation electrode (10) is disposed in an adhered manner. The electrical stimulation output unit (30) is connected to each electrical stimulation electrode (10) and provides an electrical stimulation signal. The myoelectric signal retrieval unit (35) is connected to each myoelectric signal sensing element (20) and receives a myoelectric signal. The myoelectric signal operation unit (40) is connected to the myoelectric signal retrieval unit (35). The control module (50) is electrically connected to the electrical stimulation output unit (30) and the myoelectric signal operation unit (40). The device first determines, according to the intensity of a myoelectric signal of a human trunk, the intensity of an electrical stimulation signal required for the human trunk to perform a specified action and gives a patient suitable assistance. Therefore, a local disabled limb of a patient can be effectively activated and a patient can be effectively exercised in controlling a diseased limb.
Owner:NATIONAL YUNLIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Supercapacitor electrode material preparation method based on three-dimensional graphene

A supercapacitor electrode material preparation method based on three-dimensional graphene comprises the steps that foamed nickel with surface oxide removed is steeped in oxidized graphene dispersion liquid, the oxidized graphene is made to be deposited on the foamed nickel, and then the foamed nickel is aired to remove moisture at room temperature after being taken out. The steeping method comprises the steps that the foamed nickel is steeped in the oxidized graphene dispersion liquid with the concentration of 0.5mg/ml-10mg/ml, and is aired after ultrasonic processing is carried out for 1-30 minutes; the quality of the oxidized graphene deposited on the foamed nickel is controlled through the concentration of the oxidized graphene and steeping times, and the steeping times is 1 to 30 times. The prepared oxidized graphene/foamed nickel composite electrodes are reduced through ascorbic acid, then a part of metal nickel is etched and removed by using a chemical etching method or a part of the metal nickel is simultaneously reduced, etched and removed through hydroiodic acid to obtain graphene/foamed nickel composite electrodes. The supercapacitor electrode material preparation method based on the three-dimensional graphene is simple, easy to operate, capable of improving the performance of supercapacitors and reducing manufacturing cost, and suitable for mass production.
Owner:NANJING UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products