Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

10814 results about "High current" patented technology

Apparatus and methods for electrosurgical ablation and resection of target tissue

An electrosurgical system and method for ablating, resecting, or cutting body structures, with minimal or no damage to tissue adjacent to the treatment site. The system includes an electrosurgical probe having a shaft with a shaft distal end bifurcated to provide first and second arms. First and second electrode supports are disposed on the first and second arms, respectively. At least one active electrode, in the form of a loop or partial loop, is arranged between the first and second electrode supports. A return electrode, also in the form of a loop or partial loop, is arranged between the first and second electrode supports distal to the active electrode. The active and return electrodes are configured to promote substantially high electric field intensities and associated high current densities between the active portion and the target site when a high frequency voltage is applied to the electrodes. These high current densities are sufficient to break down the tissue by processes including molecular dissociation of tissue components. In one embodiment, the high frequency voltage imparts energy to the target site to effect the vaporization and volumetric removal of a layer of tissue without causing substantial tissue damage beyond the layer of tissue ablated. In another embodiment, a fragment of target tissue is removed, with minimal or no damage to surrounding tissue, by a process including the molecular dissociation of tissue components, and the tissue fragment is retrieved for biopsy.
Owner:ARTHROCARE

Distributed power harvesting systems using DC power sources

A photovoltaic panel with multiple photovoltaic sub-strings including serially-connected photovoltaic cells and having direct current (DC) outputs adapted for interconnection in parallel into a parallel-connected DC power source. A direct current (DC) power converter including input terminals and output terminals is adapted for coupling to the parallel-connected DC power source and for converting an input power received at the input terminals to an output power at the output terminals. The direct current (DC) power converter optionally has a control loop configured to set the input power received at the input terminals according to a previously determined criterion. The control loop may be adapted to receive a feedback signal from the input terminals for maximizing the input power. A bypass diode is typically connected in shunt across the input terminals of the converter. The bypass diode functions by passing current during a failure of any of the sub-strings and/or a partial shading of the sub-strings. The bypass diode may be a single bypass diode connected across the parallel-connected DC power source. The DC power converter may convert the input power at high current to the output power at a lower current. The output terminals may be connectible with wire cables to a load, and the DC power converter is configured to reduce energy loss through the wire cables to the load.
Owner:SOLAREDGE TECH LTD

Multiple RF return pad contact detection system

A multiple RF return pad contact detection system is provided which is adaptive to different physiological characteristics of patients without being susceptible to electrosurgical current interference (e.g., interference or measurement interaction between components of the detection system). The detection system can measure or sense the contact resistance or impedance between the patient and pairs of RF return pads or return electrodes where multiple pairs of RF return pads are utilized due to the high current frequently needed during electrosurgery while eliminating or minimizing the risk of measurement interaction between the RF return pad pairs. The system allows for the independent and simultaneous measurement of the pad contact impedance for each pair of RF return pads. If the impedance of any pad pair is above a predetermined limit, the system turns off or reduces the electrosurgical output of the electrosurgical generator to prevent excess heating. The system eliminates or minimizes interference or measurement interaction between the pad pairs by providing a different signal source frequency for each pad contact pair, but a frequency which matches an associated series resonant network frequency. The current that flows in the series resonant network is a direct reflection or function of the pad impedance of the corresponding pad pair.
Owner:COVIDIEN AG

Apparatus and methods for electrosurgical ablation and resection of target tissue

An electrosurgical system and method for ablating, resecting, or cutting body structures, with minimal or no damage to tissue adjacent to the treatment site. The system includes an electrosurgical probe having a shaft with a shaft distal end bifurcated to provide first and second arms. First and second electrode supports are disposed on the first and second arms, respectively. At least one active electrode, in the form of a loop or partial loop, is arranged between the first and second electrode supports. A return electrode, also in the form of a loop or partial loop, is arranged between the first and second electrode supports distal to the active electrode. The active and return electrodes are configured to promote substantially high electric field intensities and associated high current densities between the active portion and the target site when a high frequency voltage is applied to the electrodes. These high current densities are sufficient to break down the tissue by processes including molecular dissociation of tissue components. In one embodiment, the high frequency voltage imparts energy to the target site to effect the vaporization and volumetric removal of a layer of tissue without causing substantial tissue damage beyond the layer of tissue ablated. In another embodiment, a fragment of target tissue is removed, with minimal or no damage to surrounding tissue, by a process including the molecular dissociation of tissue components, and the tissue fragment is retrieved for biopsy.
Owner:ARTHROCARE

High current welding power supply

In a welding power supply for creating welding current in a succession of current pulses with a maximum current level and a trailing off state which current pulses passing through a series circuit including an inductor and electrode in welding relationship with a workpiece wherein the power supply has (a) an inverter stage with an input to be connected to a power source, a first terminal at a first electrical polarity when the inverter is on, a second terminal at a second electrical polarity when the inverter is on, and a control to generate an off signal to turn the inverter off and remove current from the terminals to shift said current pulse toward an off state; and, (b) a power switching stage including a transistor based switch having a conduction condition passing current from the first terminal upon creation of a first logic signal and a non-conduction condition blocking current upon creation of a second logic signal, the improvement comprising: a sensor for measuring the instantaneous value of the welding current, a comparator for producing a low current signal when the instantaneous current is at a selected value substantially below the maximum current level and a circuit or program for creating the second logic signal upon production of a low current signal after generation of an off signal whereby the transistor based switch is switched from the conduction condition to the non-conduction condition when the welding current is generally at the selected value.
Owner:LINCOLN GLOBAL INC

Multiple RF return pad contact detection system

A multiple RF return pad contact detection system is provided which is adaptive to different physiological characteristics of patients without being susceptible to electrosurgical current interference (e.g., interference or measurement interaction between components of the detection system). The detection system can measure or sense the contact resistance or impedance between the patient and pairs of RF return pads or return electrodes where multiple pairs of RF return pads are utilized due to the high current frequently needed during electrosurgery while eliminating or minimizing the risk of measurement interaction between the RF return pad pairs. The system allows for the independent and simultaneous measurement of the pad contact impedance for each pair of RF return pads. If the impedance of any pad pair is above a predetermined limit, the system turns off or reduces the electrosurgical output of the electrosurgical generator to prevent excess heating. The system eliminates or minimizes interference or measurement interaction between the pad pairs by providing a different signal source frequency for each pad contact pair, but a frequency which matches an associated series resonant network frequency. The current that flows in the series resonant network is a direct reflection or function of the pad impedance of the corresponding pad pair.
Owner:COVIDIEN AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products