Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

14468 results about "Electrical polarity" patented technology

Electrical polarity is a term used throughout industries and fields that involve electricity. There are two types of poles: positive (+) and negative (−). This represents the electrical potential at the ends of a circuit. A battery has a positive terminal (+ pole) and a negative terminal (− pole). Interconnection of electrical device nearly always require correct polarity to be maintained. Correct polarity is essential for the operation of vacuum tube and semiconductor devices, many electric motors, electrochemical cells, electrical instruments, and other devices.

Programmable metallization cell structure and method of making same

A programmable metallization cell ("PMC") comprises a fast ion conductor such as a chalcogenide-metal ion and a plurality of electrodes (e.g., an anode and a cathode) disposed at the surface of the fast ion conductor and spaced a set distance apart from each other. Preferably, the fast ion conductor comprises a chalcogenide with Group IB or Group IIB metals, the anode comprises silver, and the cathode comprises aluminum or other conductor. When a voltage is applied to the anode and the cathode, a non-volatile metal dendrite grows from the cathode along the surface of the fast ion conductor towards the anode. The growth rate of the dendrite is a function of the applied voltage and time. The growth of the dendrite may be stopped by removing the voltage and the dendrite may be retracted by reversing the voltage polarity at the anode and cathode. Changes in the length of the dendrite affect the resistance and capacitance of the PMC. The PMC may be incorporated into a variety of technologies such as memory devices, programmable resistor/capacitor devices, optical devices, sensors, and the like. Electrodes additional to the cathode and anode can be provided to serve as outputs or additional outputs of the devices in sensing electrical characteristics which are dependent upon the extent of the dendrite.
Owner:AXON TECH +1

Semiconductor device

A programmable semiconductor device has a switch element in an interconnection layer, wherein in at least one of the inside of a via, interconnecting a wire of a first interconnection layer and a wire of a second interconnection layer, a contact part of the via with the wire of the first interconnection layer and a contact part of the via with the wire of the second interconnection layer, there is provided a variable electrical conductivity member, such as a member of an electrolyte material. The via is used as a variable electrical conductivity type switch element or as a variable resistance device having a contact part with the wire of the first interconnection layer as a first terminal and having a contact part with the wire of the second interconnection layer as a second terminal. By varying the electrical conductivity of the switch element, the state of connection of the via with the wire of the first interconnection layer and the state of connection of the via with the wire of the second interconnection layer may be variably set to a shorted state, an open-circuited state or to an intermediate state A two-state switch element includes an ion conductor for conducting metal ions interposed between the first and second electrodes. The second electrode is formed of a material lower in reactivity than the first electrode. The electrical conductivity across the first and second electrodes is changed by the oxidation-reduction reaction of the metal ions. There are provided first and second transistors of opposite polarities, connected to the first electrode, and third and fourth transistors of opposite polarities, connected to the second electrode.

Transformerless static voltage inverter for battery systems

A static inverter for a battery of elementary, current sources or cells electrically in series and a number N of intermediate voltage taps along the chain of elementary DC current sources, wherein the number of elementary cells comprised between an intermediate tap and another intermediate tap adjacent to it or an end terminal of said chain is proportionate to the amplitude in the respective phase interval of a number N of discretization phases of the waveform of the AC voltage to be output in a quadrant; is implemented by arranging for: a number N of power switches each connecting a respective intermediate tap and a first end terminal of a first polarity of said chain of elementary cells in series to a common circuit node of said first polarity; an output bridge stage constituted by at least four power switches controlled in pairs for switching the current paths through the bridge stage, having a first pair of nodes coupled to said common circuit node of said first plurality and to the other end terminal of polarity opposite to said first polarity of said chain of elementary cells, respectively, and a second pair of nodes constituting an AC output; and a control circuit sequentially and cyclically turning on, in a continuous manner, one switch at the time of said N switches; each for a phase interval of 1/(4N) times the period of said AC output, and alternately tuning on by pairs said four power switches of said output bridge stage at every half a period.

LED array primary display light sources employing dynamically switchable bypass circuitry

The invention comprises use of Dynamically Switchable Bypass (DSB) elements in association with one or more Light Emitting Diodes (LEDs) in arrays for illumination circuits to provide rugged, reliable lighting. The DSBs are selected from Transient Voltage Suppressors, including Silicon, Metal Oxide Varistors, and Multi Layer Varistors as well as Zener Diodes. The DSBs are not used as circuit protecting devices, but rather as alternative paths for electric current to bypass failed LEDs. Bi-directional TVSs are used as alternative electric paths for circuits using Alternating Current (AC) and parallel LED arrays that light on both phases of AC. Zener Diodes are used in parallel to, but in the opposite polarity orientation to, one or more LEDs in DC or rectified AC circuits. The inventive paired DSB/LED elements overcomes the black-out problems of prior series LED illumination systems, making possible the use of robust LEDs in illumination systems where reliability, long life, low power consumption, low heat output, resistance to shock, vibration, and humidity, and self-diagnosis are important. The DSB elements have breakdown voltages slightly higher than the LED(s) they support, so that when an LED fails, the conduction through the DSB begins. Because the conduction voltage of the DSB so nearly matches the conduction voltage of the LED(s), the remainder of the circuit continues to function as normal. The system is self-diagnostic in that any LED failure presents itself as a dark LED rather than as a whole string of dark LEDs. DSBs may be used with incandescent bulbs.

Apparatus and system to manage monitored vehicular flow rate

An apparatus and system to manage monitored traffic density in relationship to spatial locational flow rates. The system includes a variety of mobile and/or stationary transmitting and receiving comm-devices utilizing certified comm-devices equipped Avics iChipset arranged in a polarity of vehicles, in communication with stationary and/or mobile hub comm-devices and/or other certified comm-devices, strategically arranged within and/or along one or more roadways and in communication with a server channel networked to a central server. Configured to receive and/or transmit encrypted traffic data from the diversity of stationary and/or mobile transmitting and receiving comm-devices over the network, update traffic data in the non shared database, continuously calculate optimal traffic density flow for one or more of vehicles traveling along the one or more roadways based on the updated vehicular transit data, transmitting variations in speed adjustments in a network infrastructure to one or more vehicles; adjusting traffic light intersections based on traffic density traversing such roadways based on the optimal traffic flow suggestions combined with Predicated Traffic Artifacts transmitted via system generated encrypted digital comm-advice directives; and in turn share extracted and/or transmitted data with each state an federal DOT departments and other stack holders, including insurance companies and vehicle manufacturers and dealers with information to assist with making the traffic network safer. The present invention presents an Intuitive ITS engaged in Channeled Vehicular Telematics conveying statistical data, from an plurality of network devices, providing informational services forecasting safety-critical features and more, in return gathering and disseminating connected channelled intelligence between vehicles from within and surrounding infrastructures and other shareholders. Such data includes vehicle Phase-Change Spatial analytics from traffic congestion artifacts, along with Consumption Variable Analysis that provides real-time Energy Summation Data from combined vehicle exhausted energy by adjusting traffic flow based on traffic density in relationship with the human factor, vehicle capacity to navigate and topography and climatic variations in relationship with any area being traversed, and most importantly the use of the unique string identification. USIN acknowledged as ‘tMarker Audit Trail’ or simply tMarker Trail as to data inception creation point. Managed within a secure private network infrastructure, each comm-device is synchronized with localized cloud servers in communication will a central server. This invention embarks on a new era in vehicle management, further enhancing time sensitive movements, leaving no doubt as to Vehicle Symmetry Orientation, especially once you move your vehicle and additional particulars currently not beyond the scope of this art presented herein. ITTS will throughly reduce the worlds fossil fuel supply consumption rate and on many other fronts availed by extracted data, transmitted from each vehicles onboard vehicle processor equipped with Avics iChipSet on certified comm-devices, reducing navigational concerns to elementary variables creating a safe traffic network.

Reversible electrochemical mirror (REM) state monitoring

Reversible electrochemical mirror (REM) devices typically comprise a conductive oxide mirror electrode that is substantially transparent to radiation of some wavelengths, a counter electrode that may also be substantially transparent, and an electrolyte that contains ions of an electrodepositable metal. A voltage applied between the two electrodes causes electrodeposition of a mirror deposit on the mirror electrode and dissolution of the mirror deposit on the counter electrode, and these processes are reversed when the polarity of the applied voltage is changed. Such REM devices provide precise control over the reflection and transmission of radiation and can be used for a variety of applications, including smart windows and automatically adjusting automotive mirrors. According to the present invention, measurements of the sheet resistance of the mirror electrode in a REM device are correlated with the thickness of electrodeposited mirror metal and can be used to monitor the reflectance of the device. Sheet resistance measurements can be performed while the mirror state of the device is being switched if adequate isolation between the measurement and switching circuits is provided. This can be accomplished by use of external resistors or more sophisticated circuitry, or by taking advantage of the relatively high sheet resistance of the mirror electrode itself. Monitoring the reflectance of REM devices according to this invention provides significant cost and performance advantages.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products