Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

379 results about "Fast ion conductor" patented technology

In materials science, fast ion conductors are solids with highly mobile ions. These materials are important in the area of solid-state ionics, and are also known as solid electrolytes and superionic conductors. These materials are useful in batteries and various sensors. Fast ion conductors are used primarily in solid oxide fuel cells. As solid electrolytes they allow the movement of ions without the need for a liquid or soft membrane separating the electrodes. The phenomenon relies on the hopping of ions through an otherwise rigid crystal structure.

Programmable metallization cell structure and method of making same

A programmable metallization cell ("PMC") comprises a fast ion conductor such as a chalcogenide-metal ion and a plurality of electrodes (e.g., an anode and a cathode) disposed at the surface of the fast ion conductor and spaced a set distance apart from each other. Preferably, the fast ion conductor comprises a chalcogenide with Group IB or Group IIB metals, the anode comprises silver, and the cathode comprises aluminum or other conductor. When a voltage is applied to the anode and the cathode, a non-volatile metal dendrite grows from the cathode along the surface of the fast ion conductor towards the anode. The growth rate of the dendrite is a function of the applied voltage and time. The growth of the dendrite may be stopped by removing the voltage and the dendrite may be retracted by reversing the voltage polarity at the anode and cathode. Changes in the length of the dendrite affect the resistance and capacitance of the PMC. The PMC may be incorporated into a variety of technologies such as memory devices, programmable resistor/capacitor devices, optical devices, sensors, and the like. Electrodes additional to the cathode and anode can be provided to serve as outputs or additional outputs of the devices in sensing electrical characteristics which are dependent upon the extent of the dendrite.
Owner:AXON TECH +1

Preparation method of improved room temperature electron ion fast transfer electrode slice for solid-state secondary lithium battery

The invention discloses a preparation method of an improved room temperature electron ion fast transfer electrode slicefor a solid-state secondary lithium battery. The method comprises the following steps: (1) evenly mixing an active material, a conductive agent and a fast ion conductor according to a certain proportion; (2) adding a certain amount of a binder into the mixture, and mixing uniformly to obtain a uniform slurry; and (3) preparing the slurry into slices, and drying to obtain the required electrode slice. The preparation method of the electrode slice preparation uses the fast ion conductor material with high temperature high lithium ion conductivity; the material can play the role of increasing the contact area between the active particles and solid electrolyte, and he form a three-dimensional electron and lithium ion transport network, so as to ensure the rapid conduction of the electrons in the electrode also improve the transmission rate of lithium ions between the active particles and electrolyte. Therefore, the preparation method is beneficial to reducing the interface impedance among the active particles in the electrode slice and between the active particles and the solid electrolyte, thereby increasing the power rate performance of the solid-state secondary lithium battery.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

Single-crystal lithium nickel manganese cobalt positive electrode material, preparation method thereof and lithium ion battery

The invention provides a single-crystal lithium nickel manganese cobalt positive electrode material. The single-crystal lithium nickel manganese cobalt positive electrode material comprises a substrate, wherein the substrate is a compound shown as a formula I of LiNi<x>Co<y>Mn<1-x-y>M<z>O<2>, x is more than or equal to 0.3 but less than or equal to 0.75, y is more than or equal to 0.2 but less than or equal to 0.3, z is more than or equal to 0 but less than or equal to 0.1, and a coating layer is coated on a surface of the substrate and is one or more of Li2ZrO3, Li2SnO3, LiNbO3, Li4Ti5O12 and LiAlO2. Compared with the prior art, a fast ion conductor is coated on the surface, thus, the rate performance of a single-crystal material is improved, the gram capacity of the single-crystal material is improved, the cycle performance of the material is further improved, the internal resistance can also be reduced, the polarization loss is reduced, and the cycle lifetime of a battery is prolonged; and meanwhile, the advantage of large compaction of a single-crystal ternary material is maintained, a particle broken phenomenon caused by rolling particles similar to secondary particles during battery fabrication can be prevented due to relatively high compaction, and the cycle performance is improved.
Owner:NINGBO RONBAY LITHIUM BATTERY MATERIAL CO LTD

Organic and inorganic composite all-solid-state electrolyte and all-solid-state battery formed from same

The invention relates to an organic and inorganic composite all-solid-state electrolyte, in particular to an organic polycarbonate macromolecule and inorganic fast-ion conductor composite all-solid-state electrode and preparation and application of an all-solid-state battery formed from the same. The organic and inorganic composite all-solid-state electrolyte comprises polycarbonate macromolecule, an inorganic fast-ion conductor, a lithium salt and a porous rigid support material, the thickness of the organic and inorganic composite all-solid-state electrolyte is 5-2,000 micrometers, the mechanical strength is 2-150MPa, the room-temperature ionic conductivity is 1*10<-4>-6*10<-3> S / cm, and an electrochemical window is greater than 4V. The organic and inorganic composite all-solid-state electrolyte provided by the invention is easy to prepare and simple to form, has favorable mechanical property, and is relatively high in room-temperature ionic conductivity and relatively wide in electrochemical window; and meanwhile, by the organic and inorganic composite all-solid-state electrolyte, the growth of lithium dendrites of a negative electrode can be effectively prevented, the interface stability is improved, and the long-circulation and safe application performance of the battery are further improved.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

Fast ion conductor modified lithium ion battery cathode material lithium cobalt oxide with fast ion conductor and preparation method

The invention discloses a fast ion conductor modified lithium ion battery anode material lithium cobalt oxide comprising lithium cobalt oxide and a lithium fast ion conductor layer coating the outer surface of the lithium cobalt oxide. The lithium fast ion conductor layer comprises the components of Li1+x+yAxB2-xSiyP3-yO12-eN, wherein A is one or more than one of Al, Sc, La, Cr, Fe, Tl, Eu and In, B is one or more than one of Ti, Zr and Hf, N is one or more than one of Li2O, MgO and Y2O3, and x, y and e are all not less than 0 and not more than 2. The preparation method of the fast ion conductor modified lithium ion battery anode material lithium cobalt oxide comprises the following steps of: evenly mixing A, B an N sources, lithium salt, a silicon source, a phosphorus source and a lithium ion battery anode material to be modified, carrying out the processes of drying, roasting, crushing, screening and the like to prepare the lithium ion battery anode material coated with a phosphate system on the surface. The modified anode material lithium cobalt oxide not only can work under a higher voltage and greatly improve the battery capacity, but also greatly improves the cycle performance, the multiplying power performance, the overcharging performance and the safety performance thereof.
Owner:TIANJIN B&M SCI & TECH

Modified high-nickel positive electrode material coated with fast ion conductor and preparation method of modified high-nickel positive electrode material

The invention discloses a modified high-nickel positive electrode material coated with a fast ion conductor and a preparation method of the modified high-nickel positive electrode material. The high-nickel positive electrode material comprises a substrate, wherein the substrate is a compound LiNi<1-x-y>Co<x>Mn<y>M<z>O<2> shown in a formula I, in the formula I, x is more than 0 but less than or equal to 0.20, y is more than 0 but less than or equal to 0.20, z is more than 0 but less than or equal to 0.1, and M is arbitrary one or more of elements of Al, Mg, Ti, Zr, Mn, Ni, Sn, Co, Zn, W, Mo, Ru, Ca, Sr, Ba, B, Y, V and Nb. The preparation method comprises the following steps of washing and drying the high-nickel positive electrode material, uniformly mixing the high-nickel positive electrode material and an appropriate amount of coating agent, and performing sintering and sieving to obtain the modified high-nickel positive electrode material coated with the fast ion conductor. The fastion conductor is coated by washing and surface drying methods, the alkali amount of a surface of the positive electrode material is reduced, side reaction of the material and an electrolyte is reduced, and the high-temperature stability and the safety of the material are improved; and by doping and coating the surface with the fast ion conductor, the energy density, the rate performance and the cycle property of the material are improved, and the long cycle lifetime of a battery is finally prolonged.
Owner:NINGBO RONBAY LITHIUM BATTERY MATERIAL CO LTD

Modified high nickel ternary positive electrode material and its preparation method and lithium ion battery

The invention discloses a modified high nickel ternary positive electrode material. The surface of a high nickel ternary positive electrode material is coated with a coating layer containing a fast ion conductor. The fast ion conductor has the chemical general formula of Li3x1La2/3-x1Ma1TiNz1O3, Li2+2x2Zn1-x2GeO4 or LiM'2(PO4)3, wherein M represents Ba<2+> and/or Sr<2+>, N represents Al<3+> and/orZr<4+>, x1 is greater than or equal to 0.04 and less than or equal to 0.167, a1 is greater than or equal to 0 and less than or equal to 1, z1 is greater than or equal to 0 and less than or equal to 1, x2 is greater than -0.3 and less than 0.8, and M' represents one or more of Zr, Ti, Ge and Hf. Compared with the existing positive electrode material, the modified high nickel ternary positive electrode material is provided with the coating layer containing the fast ion conductor and the coating layer can react with residual lithium on the surface of the material to reduce residual lithium on the surface of the material and inhibit side reactions of the residual lithium and the electrolyte so that material surface stability and cycle performances are improved. The modified high nickel ternary positive electrode material has good lithium ion deintercalation ability, improves the first discharge capacity of the material and first coulombic efficiency and has a good application prospect. The invention also discloses a preparation method of the modified high nickel ternary positive electrode material and a lithium ion battery.
Owner:CONTEMPORARY AMPEREX TECH CO

High-nickel ternary positive electrode material coated with fast ion conductor, preparation method thereof, and lithium ion battery prepared from material

InactiveCN109879331AImprove ionic conductivityHigh initial charge-discharge specific capacityCell electrodesSecondary cellsElectrical conductorPhysical chemistry
The invention discloses a high-nickel ternary positive electrode material coated with a fast ion conductor, a preparation method thereof, and a lithium ion battery prepared from the material. The basematerial of the high-nickel ternary positive electrode material coated with the fast ion conductor is LiNi1-x-yCoxMnyMzO2, wherein x is more than 0 and not more than 0.15, y is more than 0 and not more than 0.15, z is not less than 0 and not more than 0.1, and M is any one or more of Al, Mg, Co, Ni, Ti, Fe, Zr, and Sn; and the chemical general formula of the fast ion conductor is Li1+aAaD2-a(PO4)3, wherein A is any one or more of Al, Cr, Ga, Fe, Sc, In, Lu, Y, and La, D is any one or more of Ti, Ge, Zr, Sn and Hf, and a is more than 0 and not more than 1. The coating of the surface with the fast ion conductor can effectively reduce the residual lithium on the surface of the ternary positive electrode material, and reduces side reactions of the ternary positive electrode material and an electrolyte; and the lithium ion battery assembled by using the positive electrode material has a high first charge-discharge specific capacity and a high capacity retention.
Owner:ZOTYE INT AUTOMOBILE TRADING CO LTD

High-nickel ternary cathode material coated with fast ion conductor and preparation method thereof

InactiveCN110690435AClose contactSolving lithium-ion transport problemsCell electrodesSecondary cellsElectrical conductorInternal resistance
The invention provides a high-nickel ternary cathode material coated with a fast ion conductor and a preparation method thereof. The high-nickel ternary cathode material is spherical or spheroidic secondary particles composed of primary particles, the diameter of the high-nickel ternary cathode material is 1-30 [mu]m, and the chemical formula of the high-nickel ternary cathode material is LiNi0.8Co0.1Mn0.1O2. The preparation method comprises the following steps of: weighing raw materials for synthesizing the fast ion conductor in proportion, and uniformly dispersing the raw materials in a solvent to obtain a mixed solution; adding the high-nickel ternary precursor into the mixed solution, and then performing stirring, drying and grinding to obtain high-nickel ternary precursor powder coated with the fast ion conductor; and uniformly mixing the obtained precursor powder with a lithium salt, and performing sintering to obtain the high-nickel ternary cathode material coated with the fastion conductor. The fast ion conductor material is used as a coating substance of the ternary cathode material and can provide a fast transmission channel for lithium ion transmission, so that the purpose of reducing the internal resistance of the battery is achieved; and after coating, the cycling stability of the battery is improved under the condition that the specific discharge capacity of thebattery is not reduced.
Owner:CENT SOUTH UNIV +1

High-nickel material coated with aluminum and lithium silicate on surface and doped with fluorine on surface layer and preparation method

The invention discloses a high-nickel material coated with aluminum and lithium silicate on the surface and doped with fluorine on a surface layer. The high-nickel material comprises an aluminum and lithium silicate coating layer and a high-nickel ternary material central layer, wherein the thickness of the coating layer is 1-200 nm, and the coating layer is doped with a fluorine element. In addition, the invention discloses a preparation method of the high-nickel material. The preparation method comprises the steps of mixing, drying and screening, lithium-adding sintering and fluorine-addingthermal treatment. The aluminum and lithium silicate fast-ion conductor material coating layer has good lithium-ion conducting performance, doped fluorine ions replace oxygen in the coating layer or the high-nickel material, accordingly the electronic conductivity of the material is improved, finally the surface of the high-nickel material has better lithium-ion and electronic conductivity properties, and playing of the rate capability of an anode material for lithium ion batteries is facilitated. The preparation method of the high-nickel material is low in cost, the process is simple, and industrialization is easy to achieve.
Owner:余姚市海泰贸易有限公司

Preparation method of fast ion conductor and conducting polymer dual-modified ternary cathode material for lithium-ion battery

The invention discloses a preparation method of a fast ion conductor and conducting polymer dual-modified ternary cathode material for a lithium-ion battery. According to the material, a ternary cathode material for a lithium-ion battery is taken as a core, a fast ion conductor is taken as a first coating layer, a conducting polymer is taken as a second coating layer and the fast ion conductor isany one of lithium vanadate, lithium metaaluminate and lithium zirconate. The fast ion conductor and the ternary cathode material are firstly mixed evenly and ground; the ternary cathode material is coated with the fast ion conductor by using a high-temperature solid state method; the conducting polymer and the ternary cathode material coated with the fast ion conductor are mixed evenly and milled; and the ternary cathode material coated with the fast ion conductor is coated with the conducting polymer to finally obtain the fast ion conductor and conducting polymer dual-modified ternary cathode material for the lithium-ion battery. The fast ion conductor is combined with the conducting polymer to modify the ternary cathode material, so that the ternary cathode material has excellent cycleperformance and good rate capability.
Owner:CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY

A multistage layer-coated ternary cathode material for A lithium ion batterY, a preparation method thereof and a lithium ion battery

The invention provides a multistage layer-coated ternary cathode material for a lithium ion battery, which comprises a ternary cathode material and a multilayer cladding layer coated on the surface ofthe ternary cathode material; A metal oxide layer, a transition layer formed by a metal oxide and a metal phosphate salt, and a metal phosphate layer are sequentially arranged from that inside to theoutside of the multilayer cladding layer, wherein the metal oxide layer and / or the transition layer further comprises a lithium metal oxide of a fast ion conductor, and the transition layer and / or the metal phosphate salt layer further comprises lithium phosphate. A ternary cathode material coated with a plurality of layers is formed by multi-stage coating, thereby realizing the effect of inhibiting the reaction between the surface of the cathode material and the electrolyte, and improving the thermal stability and cycle life of the material through the synergistic effect of different types of surface coatings; While increasing the safety of lithium ion batteries. In addition, the preparation method provided by the invention is simple, can be prepared by using the existing equipment, andsaves the production cost.
Owner:NINGBO RONBAY LITHIUM BATTERY MATERIAL CO LTD

Lithium-enriched manganese-based anode material with fast ion conductor coating layer and surface heterostructure and preparation method of lithium-enriched manganese-based anode material

The invention discloses a lithium-enriched manganese-based anode material with a fast ion conductor coating layer and a surface heterostructure and a preparation method of the lithium-enriched manganese-based anode material. The surface of the lithium-enriched manganese-based anode material is coated with a coating layer consisting of Li3PO4 and Li4P2O7; a spinel phase nano-crystal is inlaid in the surface of the lithium-enriched manganese-based anode material; the spinel phase nano-crystal and a lithium-enriched layered material form a heterostructure; the lithium-enriched manganese-based anode material has a structural formula of Li1+aMnbMcO2, wherein M is one or more of Ni, Co, Al, Cr, Fe and Mg, 0<=a<=1, 0<=b<=1, and 0<=c<=1. The method comprises the following steps: (1) fully mixing the lithium-enriched manganese-based anode material with a proper amount of phosphate; and (2) sintering the sample which is uniformly mixed in a certain atmosphere, thus obtaining the lithium-enriched manganese-based anode material with the fast ion conductor coating layer and the surface heterostructure. The first coulombic efficiency of the lithium-enriched anode material is improved, the cycling stability and rate performance of the lithium-enriched anode material are improved, and the requirements of a power battery can be met.
Owner:HARBIN INST OF TECH

In-situ synthesis method of fast ion conductor inlaid lithium ion battery cathode material

The invention discloses an in-situ synthesis method of fast ion conductor inlaid lithium ion battery cathode material. Nickel salt, cobalt salt, M salt (M is one of Mn or Al) and a surface active agent are added into a solvent, and precursor powder is prepared through a spray drying method. Precursor is subjected to presintering, so that spherical porous nickel / cobalt / M-based precursor is obtained. Appropriate lithium salt, an organic sequestering agent, a solvent and a fast ion conductor material are mixed through a sol-gel heat treating method, so as to obtain sol, and then the spherical porous precursor is spread in the sol till the solvent is evaporated to form gel, and the fast ion conductor inlaid composite cathode material is synthesized through heat treatment. The method abandons the thinking that the cathode material is firstly prepared and then surface modification is performed in the traditional technology, and realizes the in-situ growth of inlaid composite material. The surface layer of the inlaid composite material adopts a uniformly coated fast ion conductor thin layer, the inner core adopts fast ion conductor doped cathode material, and the inlaid composite material has the advantages of excellent electrochemical property, good safety and storage performance and the like.
Owner:CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Preparation method of high-rate monox-based lithium electric anode material

The invention belongs to the field of new energy materials and electrochemistry, and particularly relates to a preparation method of a high-rate monox-based lithium electric anode material. Accordingto the method, a sol-gel method and a carbon thermal reduction method are adopted to prepare a monox-carbon/ graphene material with electrochemical activity, then dispersed fast ion conductor lithiumsilicate is prepared on the surface of the monox-carbon material through spin wrapping and thermal treatment, and finally the monox-carbon@lithium silicate/ graphene material is obtained. The fast ionconductor lithium silicate can effectively accelerate the ion transport during charging and discharging of a composite material and accelerate the reaction kinetics of an electrode. The in-situ introduction of the flexible graphene during preparation can effectively buffer the volume change caused by the lithium deintercalation of monox in a cyclic process and improve the structural stability ofthe electrode. The preparation method of the high-rate monox-based lithium electric anode material has the advantages that the designed material has higher rate characteristics and good cycle stability; the preparation process has higher controllability and can be applied to the preparation of other high-performance electrode materials.
Owner:UNIV OF SCI & TECH BEIJING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products