Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

789results about How to "Improve the first Coulombic efficiency" patented technology

Silicon-based composite material and preparation method and applications thereof

ActiveCN103400971AGuaranteed lattice structureKeep aliveCell electrodesHigh temperature storageAlcohol
The invention provides a silicon-based composite material, which is prepared from silicon particles, silicate and optional carbon, wherein the mixture of the silicate and the optional carbon forms a massive body, and the silicon particles are dispersed in the massive body. A preparation method comprises the following steps of: dispersing the silicon particles into absolute ethyl alcohol and/or deionized water to form suspension liquid; dispersing the silicate and the optional carbon into the absolute ethyl alcohol and/or the deionized water to form suspension liquid; ultrasonically oscillating the two kinds of suspension liquid respectively, and then stirring; dropwise adding the suspension liquid of the silicon particles into the suspension liquid of the silicate and the optional carbon to form mixed liquid, heating and stirring the mixed liquid until evaporating the mixed liquid into paste; then, putting the paste in an oven to be dried to obtain masses, and grinding and sieving to obtain undersize particles; and conducting heat treatment in an inert atmosphere, and grinding and sieving to obtain the silicon-based composite material. According to the silicon-based composite material, a lattice structure of the silicon particles can be ensured, therefore the activity of the silicon particles is ensured, and the energy density, the first-time coulomb efficiency and the high-temperature storage performance of lithium ion batteries are increased.
Owner:NINGDE AMPEREX TECH

Composite hard carbon cathode material of lithium ion battery and preparation method thereof

The invention discloses a composite hard carbon cathode material of a lithium ion battery and a preparation method thereof, aiming at improving the first coulombic efficiency. In the composite hard carbon cathode material, a coating object is coated outside a hard carbon matrix, a precursor of the hard carbon matrix comprises a thermoplastic resin which forms the hard carbon matrix by pyrolysis, and a precursor of the coating object is an organic matter. The preparation method comprises the steps of curing, pyrolyzing, pulverizing and coating. Compared with the prior art, a curing agent and adopant are added to the resin for curing, the cured mixture is taken as a carbon source, and then the carbon source is pyrolyzed and coated to finally obtain the composite hard carbon cathode material; and the first reversible capacity of the obtained composite hard carbon cathode material is more than 455.2mAh/g and the first coulombic efficiency thereof is more than 79.4% in the case of 0.2C, thus the obtained composite hard carbon cathode material has high capacity and high first coulombic efficiency, meets the requirement of the lithium ion battery with high capacity, high multiplying power and excellent high and low temperature cycle performance on the charge-discharge performances of the cathode material, has low production cost and is suitable for industrial production.
Owner:JIXI BTR GRAPHITE IND PARK CO LTD +2

Doped multi-layer core-shell silicon-based composite material for lithium ion battery and preparation method thereof

ActiveCN109599551AInhibits and buffers swellingPrevent partial failureMaterial nanotechnologySecondary cellsCarbon filmComposite film
The present invention relates to a doped multi-layer core-shell silicon-based composite material for a lithium ion battery, and a preparation method thereof. Other than being doped with a necessary lithium element, the material is also doped with at least a non-metallic element and a metal element; the material has a structure in which a silicon oxide particle doped with elements is taken as a core, and a multilayer composite film which is tightly coated on the surface of the core particle is taken as a shell; the core particle contains uniformly dispersed monoplasmatic silicon nanoparticles,the content of doping elements gradually decreases from the outside to the inside without a clear interface, and a dense lithium silicate compound is formed on the surface of the core particle by embedding and doping the lithium element; and the multilayer composite film is a carbon film layer and a doped composite film layer composed of the carbon film layer and other elemental components. The doped multi-layer core-shell silicon-based composite material provided by the present invention has a high capacity, good rate performance, high coulombic efficiency, good cycle performance, a low expansion rate, and other electrochemical characteristics when the material is used for the negative electrode of lithium ion battery.
Owner:BERZELIUS (NANJING) CO LTD +1

High-capacity metal lithium powder composite cathode and preparation method thereof, and multi-layer composite electrode

The invention discloses a high-capacity metal lithium powder composite cathode and a preparation method thereof and a multi-layer composite electrode. The high-capacity metal lithium powder composite cathode comprises the following components in part by weight: 1 to 80 parts of metal lithium powder, 10 to 90 parts of cathode powder, 1 to 10 parts of conductive agent, 1 to 4.5 parts of adhesive and 0 to 0.5 part of surfactant. By compounding the metal lithium powder with materials such as graphite, soft carbon, hard carbon, tin and oxides thereof, silicon and oxides thereof and the like, mass ratio capacity and volume ratio capacity of a cathode material are improved, using amount of active substances is reduced, and the battery specific capacity is improved; the specific capacity of the cathode can be adjusted by adjusting the rate of metal lithium to the graphite; short circuit in a battery caused by piercing of a diaphragm through metal dendritic crystal growth can be effectively prevented through the separation of an insulating protective layer, so that the safety performance of the battery is improved; and the metal lithium powder is counteracted with irreversible capacity loss of the cathode, and primary Kulun efficiencies of the graphite, the hard carbon, the soft carbon, the tin, the silicon and other cathode materials are improved.
Owner:EC POWER LLC

Lithium-rich pole piece of lithium ion battery and preparation method thereof

The invention provides a lithium-rich pole piece of a lithium ion battery and a preparation method thereof. The lithium-rich pole piece comprises a current collector, a diaphragm and a porous lithium piece, wherein the diaphragm contains an active material and is formed on the current collector; the diaphragm and the current collector form an initial pole piece; and the porous lithium piece covers the diaphragm, and the capacity of the porous lithium piece is matched with the capacity of lithium added to the anode. The preparation method comprises the following steps of: preparing a slurry from the active material, a conductive agent, an adhesive and a solvent, and then applying the slurry on the current collector and drying to obtain the initial pole piece, so that the slurry applied on the current collector becomes the diaphragm after being dried; punching a metal lithium piece to obtain the porous lithium piece, so that the capacity of the porous lithium piece is matched with the capacity of lithium added to the anode; and covering the diaphragm surface of the initial pole piece with the porous lithium piece, to obtain the lithium-rich pole piece of the lithium ion battery. According to the invention, the lithium amount added to the anode can be precisely controlled, the lithium adding uniformity is increased, the first coulombic efficiency, the energy density and the electrochemical properties of the battery are increased, battery deformation is alleviated, the process is simple, and the cost is low.
Owner:DONGGUAN AMPEREX TECH

Silicon monoxide/silicon/lithium metasilicate composite negative electrode material and preparation method thereof

The invention discloses a silicon monoxide/silicon/lithium metasilicate composite negative electrode material. The silicon monoxide/silicon/lithium metasilicate composite negative electrode material comprises a silicon monoxide/silicon/lithium metasilicate composite material and an inorganic matter coating layer. The invention also provides a preparation method of the silicon monoxide/silicon/lithium metasilicate composite negative electrode material. The preparation method comprises the following steps: taking silicon monoxide and an inorganic compound of lithium element, mixing and ball-milling the silicon monoxide and the inorganic compound of the lithium element, sintering the obtained mixture in a protection gas environment, and naturally cooling the sintered mixture to obtain the silicon monoxide/silicon/lithium metasilicate composite material; and mixing and ball-milling the silicon monoxide/silicon/lithium metasilicate composite material and sintering the obtained mixture undera protection gas condition. The preparation method of the silicon monoxide/silicon/lithium metasilicate composite negative electrode material has the advantages of simplicity, safety, low cost, and easiness in operation and industrial production, and the obtained composite negative electrode material has the advantages of high reversible capacity, excellent cycle performances and high initial Coulomb efficiency.
Owner:HEFEI GUOXUAN HIGH TECH POWER ENERGY

Silicon/carbon composite microsphere negative electrode material as well as preparation method and application for same

The invention relates to a silicon/carbon composite microsphere negative electrode material as well as a preparation method and an application for the same. The silicon/carbon composite microsphere negative electrode material is silicon/carbon composite microspheres internally provided with pore structures; and each microsphere comprises a matrix material of hard carbon, and an active material of silicon powder. The preparation method for the silicon/carbon composite microsphere negative electrode material comprises the following steps of: uniformly mixing silicon powder, soft carbon, carbon black, a soluble carbon-containing organic adhesive and a solvent with formula amounts to obtain a slurry; and performing spray-drying and carbonization on the slurry to obtain the silicon/carbon composite microsphere negative electrode material. The silicon/carbon composite microsphere negative electrode material provided by the invention has the advantages of being high in tap density, high in reversible capacity, good in cyclicity, good in rate capability, safe and reliable, and high in first-week coulombic efficiency; the preparation method provided by the invention is simple in process, environment-friendly, low in energy consumption and cost, and easy to realize large-scale production.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Lithium battery current collector, pole piece, lithium battery, preparation method thereof and application of lithium battery

The invention discloses a lithium battery current collector and a preparation method thereof, a lithium battery pole piece and a preparation method thereof, a lithium battery and a preparation method and application thereof. The lithium battery current collector includes a porous current collector body, which is filled or / and deposited with a lithium source material. The lithium source material is a lithium metal or / and lithium-rich material. The lithium battery pole piece and the lithium battery both contain the lithium battery current collector. The lithium battery current collector provided by the invention enables the lithium source material to be effectively fixed in the current collector body. The lithium battery pole piece containing the lithium battery current collector can make the lithium in the lithium source material ionize during electrochemical activation and completely absorbed by a positive active material in an anode layer or a negative active material in a cathode layer so as to compensate the lithium ion lost in an initial charge / discharge process, thereby reducing the irreversible capacity. Therefore, the lithium battery has high initial coulombic efficiency and capacity as well as safety performance.
Owner:HUAWEI TECH CO LTD

High-capacity graphite material and preparation method as well as application thereof

The invention relates to a high-capacity graphite material and a preparation method as well as application thereof. The high-capacity graphite material comprises artificial graphite and natural graphite, wherein the mass ratio of artificial graphite to natural graphite is 20:1 to 1:1. According to the preparation method, the artificial graphite and the natural graphite are uniformly mixed according to a certain mass ratio, and then surface modification is carried out on the mixture. The prepared graphite material has the advantages of high discharge capacity, high first efficiency, long cycle life, low cost and the like; the discharge capacity of the high-capacity graphite material can reach up to more than 350mAh/g (even reach up to more than 368mAh/g); a half-cell of the high-capacity graphite material charges and discharges at the 1C multiple power; after the high-capacity graphite material cycles for 100 times, the capacity retention ratio of the high-capacity graphite material is still more than 90% (even reaches up to more than 96.3%); the first efficiency reaches up to more than 95.5%; and the manufacturing cost is reduced by about 1-10%. The high-capacity graphite material provided by the invention not only can meet the requirement of a lithium ion power battery for the high multiplying power charge-discharge of the material, but also reduces the manufacturing cost of the cathode material of the lithium ion battery.
Owner:天津市贝特瑞新能源科技有限公司

Modified high nickel ternary positive electrode material and its preparation method and lithium ion battery

The invention discloses a modified high nickel ternary positive electrode material. The surface of a high nickel ternary positive electrode material is coated with a coating layer containing a fast ion conductor. The fast ion conductor has the chemical general formula of Li3x1La2/3-x1Ma1TiNz1O3, Li2+2x2Zn1-x2GeO4 or LiM'2(PO4)3, wherein M represents Ba<2+> and/or Sr<2+>, N represents Al<3+> and/orZr<4+>, x1 is greater than or equal to 0.04 and less than or equal to 0.167, a1 is greater than or equal to 0 and less than or equal to 1, z1 is greater than or equal to 0 and less than or equal to 1, x2 is greater than -0.3 and less than 0.8, and M' represents one or more of Zr, Ti, Ge and Hf. Compared with the existing positive electrode material, the modified high nickel ternary positive electrode material is provided with the coating layer containing the fast ion conductor and the coating layer can react with residual lithium on the surface of the material to reduce residual lithium on the surface of the material and inhibit side reactions of the residual lithium and the electrolyte so that material surface stability and cycle performances are improved. The modified high nickel ternary positive electrode material has good lithium ion deintercalation ability, improves the first discharge capacity of the material and first coulombic efficiency and has a good application prospect. The invention also discloses a preparation method of the modified high nickel ternary positive electrode material and a lithium ion battery.
Owner:CONTEMPORARY AMPEREX TECH CO

Method for supplementing lithium to lithium ion battery pole piece

The invention belongs to the technical field of lithium ion batteries and particularly relates to a method for supplementing lithium to a lithium ion battery pole piece. The method includes the following steps that 1, lithium colloidal particles of core-shell structures are prepared, shell layers are made of rubber and/or resin, core layers are made of metal lithium, and metal lithium is coated with the shell layer materials to form the lithium colloidal particles; 2, the lithium colloidal particles obtained in the step 1 and an electrode active material are mixed to prepared into electrode active slurry, then the surface of a current collector is evenly coated with the mixed electrode active slurry, and drying is carried out. The lithium colloidal particles of the core-shell structures are used for the battery pole piece to prepare a lithium-rich battery pole piece. The method for supplementing lithium to the lithium ion battery pole piece is easy to operate, safe and efficient, the risk that metal lithium is oxidized is avoided, the requirements for the environment and equipment are low, the production cost can be reduced, meanwhile, the first-time coulombic efficiency and cycle performance of a lithium ion battery adopting the battery pole piece are both obviously improved, and battery capacity losses caused by irreversible cycle are greatly reduced.
Owner:DONGGUAN TAFEL NEW ENERGY TECH CO LTD +1

Lithium ion battery and lithium-rich anode sheet

The invention provides a lithium ion battery and a lithium-rich anode sheet. The lithium-rich anode sheet comprises: a current collector; and a diaphragm, which contains an active substance and is formed on the current collector, wherein the diaphragm and the current collector form an initial anode sheet. The current collector in the initial anode sheet is a porous current collector. The initial anode sheet is rich in lithium on one side, and the lithium rich amount matches the lithium supplement capacity needed by the initial anode sheet. The lithium ion battery includes: a cathode sheet; an anode sheet; an isolation membrane disposed between the cathode sheet and the anode sheet; and an electrolyte solution. The anode sheet is a lithium-rich anode sheet. The lithium-rich anode sheet of the lithium ion battery provided by the invention not only overcomes the excess lithium supplement problem in traditional lithium-rich anode sheets, and also can effectively control the lithium supplement amount of the anode so as to realize uniform lithium supplement and enhance the first coulombic efficiency of the lithium ion battery adopting the lithium-rich anode sheet. Thus, the energy density of the lithium ion battery is greatly improved, and the lithium ion battery can be ensured with better electrochemical properties.
Owner:DONGGUAN AMPEREX TECH

Graphene/solid-state electrolyte composite coated silicon composite negative electrode and preparation method thereof

The invention discloses a graphene / solid-state electrolyte coated silicon composite material and a preparation method thereof. The preparation method comprises the following steps: coating a silicon-based material with a layer of graphene through a chemical vapor deposition method, and accumulating concentrated ammonia water into an oxide through a precursor ester of an oxide for coating to obtainan oxide and graphene co-coated silicon negative electrode material; performing lithiation on the composite material with lithium hydroxide monohydrate to finally obtain the graphene / solid-state electrolyte coated silicon composite material. In the composite material, graphene directly grows on the surfaces of silicon particles, and the surface of graphene is coated with solid-state electrolyte,thereby forming double-layer coating. The graphene inside can increase the electronic conductivity of the silicon-based material, and relieve volume expansion of silicon. The coating solid-state electrolyte outside can improve the Coulomb efficiency and the magnification performance of the silicon-based negative electrode material, reduce the electrochemical reaction between the negative electrodematerial and electrolyte, increase the Coulomb efficiency of the silicon-based negative electrode and improve the high current charging and discharging performance of the material.
Owner:深圳索理德新材料科技有限公司

Silicon-base negative material with silane coupling agent and conductive polymer two-layer cladding structure as well as preparation method and application of material

The invention discloses a silicon-base negative material with a silane coupling agent and conductive polymer two-layer cladding structure as well as a preparation method and application of the material. The silicon-base negative material is characterized in that monomer silicon is adopted as a substrate, the substrate is coated with a silane coupling agent decorative layer, and the silane coupling agent decorative layer is coated with protonic acid doping-state conductive polyaniline. The preparation method comprises the following steps: (1) ultrasonically blending a silane coupling agent and silicon powder, and refluxing the mixture of the silane coupling agent and the silicon powder at a given temperature so as to decorate the silicon powder; (2) ultrasonically blending aniline monomer and decorated silicon powder in an acid solution system, and performing in-situ polymerizing on the aniline monomer and the decorated silicon powder to obtain a silicon-base composite material which is coated with the conductive polymer; (3) washing, suction-filtering and vacuum-drying the mixed solution to obtain the silicon-base negative material with the silane coupling agent and conductive polymer two-layer cladding structure. When being doped in graphite, the silicon-base negative material can be used for preparing a negative material of a lithium ion battery. The preparation method is simple and easy, low in manufacturing cost, good in repeatability and convenient for industrialized mass production.
Owner:HARBIN INST OF TECH

Modified lithium manganese oxide electrode material for lithium ion secondary battery and synthesizing method thereof

The invention provides a modified lithium manganese oxide electrode material for a lithium ion secondary battery, which is characterized in that the general formula is Li(4-x)A(x+y)Mn(5-y)O12.epsilonBOz. The synthesizing method comprises the following steps: weighing and mixing raw materials evenly in accordance with the stoichiometric ratio in the general formula and then adding the mixture of the raw materials to a container; adding an oxidizing solution, evening mixing and reacting for over 10 minutes, and then taking the materials out, washing and drying; and then carrying out high-temperature calcination and reaction for 1-30 hours at a temperature of 400-1200 DEG C under an oxygen-contained atmosphere, and cooling to obtain the modified lithium manganese oxide electrode material. Compared with an existing electrode material and a synthesizing technology, the modified lithium manganese oxide electrode material produced in the production process can improve the crystalline characteristic and the purity of products as well as the specific capacity, the initial coulomb efficiency, the cyclical stability and other characteristics in electrochemical property; and the modified lithium manganese oxide electrode material improves performances of the lithium ion battery, promotes the wider applications of the lithium ion battery and has significant economic meanings and practical value.
Owner:王明月

Lithium ion battery pre-lithiated silicon-carbon multilayer composite negative electrode material and preparation method thereof

The invention discloses a lithium ion battery pre-lithiated silicon-carbon multilayer composite negative electrode material and a preparation method thereof. The composite negative electrode materialcomprises an amorphous carbon matrix, pre-lithiated silicon monoxide particles and a graphene material, wherein the graphene material is uniformly coated on an outer surface of the pre-lithiated silicon monoxide to form composite particles, and the composite particles are uniformly dispersed in the amorphous carbon matrix. After the silicon monoxide is pre-lithiated, the first effect of the silicon-based negative electrode material is greatly improved, the graphene material is light in weight, high in strength and excellent in conductivity, so mechanical property and conductivity of the composite material are greatly improved, the amorphous carbon matrix plays a role in isolating electrolyte and preventing silicon from being in contact with the electrolyte to generate a large number of unstable SEI films, and experiments show that the composite negative electrode material prepared has characteristics of good mechanical property, high conductivity, high initial coulombic efficiency andstable cycle performance.
Owner:SHENZHEN XIANGFENGHUA TECH CO LTD +1

Silicon carbon composite microsphere, and preparation method and application thereof

The invention provides a silicon carbon composite microsphere, and a preparation method and application thereof. The method comprises the following steps that (1) silicon dispersion liquid is prepared: 30 to 95 percent of asphalt and 5 to 70 percent of silicon are used as raw materials, and are dispersed in an organic solvent; ball milling is performed; (2) other carbon sources are added into grinding liquid; the ball milling is further performed; (3) the dispersion liquid obtained through the ball milling is added into a high-temperature high-pressure reactor; high-temperature high-pressure reaction is performed under the inert gas protection; (4) products obtained in the third step are subjected to suction filtration to obtain solid particles; (5) the solid particles obtained in the fourth step are subjected to high-temperature carbonizing treatment in inertia non-oxidizing atmosphere to obtain the silicon carbon composite microsphere. The method has the advantages that the asphalt and the micron silicon are used as raw materials; the raw materials are cheap and are easy to obtain; a dispersing agent is nontoxic and can be recovered; the process is simple; the sphericity degree of the obtained material is good; the tap density is high; the specific surface is small; a stable SEI membrane is favorably formed; the circulation stability is excellent.
Owner:BEIJING IAMETAL NEW ENERGY TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products