Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2260 results about "Volume expansion" patented technology

Volume expansion refers to an increase in the total amount of fluid present in the body.

Silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof

The invention relates to a silicon-carbon composite negative electrode material and a preparation method thereof. The silicon-carbon composite negative electrode material successively comprises nano silicon / graphite particles, a first carbon coating layer and an organic cracking carbon layer from inside to outside. The nano silicon / graphite particles are globular or globular-like composite particles formed by employing graphite as an inner core of a volume expansion buffer substrate and coating a nano silicon particle layer; the first carbon coating layer comprises carbon nanotubes and / or amorphous carbon, the carbon nanotubes and / or amorphous carbon are interspersed in a gap network formed by gaps of the nano silicon particles and / or are coated outside the nano silicon particle layer, so that the nano silicon is tightly wrapped between the carbon nanotubes and / or between the carbon nanotubes and the graphite substrate, and besides, the material ion conductivity is effectively enhanced; the organic cracking carbon layer is an outermost coating layer of the silicon-carbon composite negative electrode material. The silicon-carbon composite negative electrode material has excellent cycle performance, excellent multiplying power charging and discharging performance and lower volume expansion effect.
Owner:BTR NEW MATERIAL GRP CO LTD

Preparation method of composite lithium metal anode

The invention discloses a preparation method of a composite lithium metal anode and belongs to the technical field of lithium metal batteries. The preparation method of the composite lithium metal anode comprises steps as follows: firstly, the surface of a framework material is modified, the framework material with the lithiophilic surface is prepared, the framework material is contacted with liquid metal lithium, so that the liquid metal lithium is injected into the framework material with the lithiophilic surface, and the composite lithium metal anode is prepared after cooling. The lithiophilic surface can be obtained through modification of various framework materials (including a conductive framework material and an insulated framework material), the framework materials are efficientlycomposited with the liquid metal lithium, and the composite lithium metal anode material is obtained. When the obtained composite lithium metal anode material is assembled in a total battery, growthof lithium dendrites can be effectively inhibited, the volume expansion effect of the anode is relieved, the pulverization phenomenon of the lithium metal anode is reduced, and the cycling stability and the safety of the lithium metal battery are substantially improved, and the cycle life of the lithium metal battery is substantially prolonged.
Owner:TSINGHUA UNIV

Emulsion deep profile/displacement control agent and preparation method of emulsion deep profile/displacement control agent containing gel microspheres of core shell structure

The invention relates to a preparation method of an emulsion deep profile/displacement control agent containing gel microspheres of a core shell structure. According to the method, materials are fed many times to carryout inverse emulsion low-temperature oxidation and reduction to initiate free radical polymerization so that water-solubility monomers (including acrylamide, ionic monomer I, the ionic monomer II and the third monomer) react with a cross-linking agent to generate the emulsion deep profile/displacement control agent containing gel microspheres of a core shell structure. The invention also relates to the emulsion deep profile/displacement control agent containing gel microspheres of a core shell structure, which is prepared by using the method. The profile/displacement control agent is a water-solubility microgel oil displacement material containing gel microspheres from nano scale to micron scale; with small initial grain size, the profile/displacement control agent can enter into the deep part of stratum; in addition, the profile/displacement control agent has high emulsion active component content and good flowability, can have volume expansion and mutual cementation under the actions of formation water and temperature according to the condition whether charges carried by the ionic monomers at a core layer and a shell layer are same or not; therefore the profile/displacement control requirements of different geological oil deposits of oil fields can be met.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Composite silicon negative electrode material, and preparation method and application thereof

The invention relates to a composite silicon negative electrode material. The composite silicon negative electrode material comprises nanometer silicon, a nanometer composite layer coating the surface of nanometer silicon and a conductive carbon layer uniformly coating the nanometer composite layer, wherein the nanometer composite layer is silicon oxide and metal alloy. According to the composite silicon negative electrode material with a three-layer structure, the nanometer composite layer composed of the silicon oxide and the metal alloy coating the surface of the silicon oxide effectively reduces volume expansion of the nanometer silicon, maintains the characteristic of high conductivity of the silicon material, improves mobility of lithium ions, prevents direct contact between a silicon negative electrode and an electrolyte, and can form a hard SEI film on the surface of the composite silicon negative electrode material, thereby allowing the cycle performance of the material to be substantially enhanced. The composite silicon negative electrode material has the characteristics of high capacity (greater than 1500 mAh / g), long cycle life (with a capacity retention ratio of more than 90% after 300 cycles) and high conductivity. The preparation method for the composite silicon negative electrode material is simple, easily controllable, and applicable to industrial production.
Owner:DINGYUAN NEW ENERGY TECH CO LTD

Solid-state composite metal lithium negative electrode

The invention provides a solid-state composite metal lithium negative electrode. The solid-state composite metal lithium negative electrode consists of a composite layer and a solid-state electrolyteprotecting layer, wherein the composite layer consists of metal lithium and lithium-favoring framework material; the solid-state electrolyte protecting layer comprises an inorganic solid-state electrolyte and an organic solid-state electrolyte; the composite layer of metal lithium and lithium-favoring framework material is provided by melting and lithium filling, electrochemical deposition or physical and mechanical mixing; the solid-state electrolyte protecting layer is applied to the surface of the composite layer by impregnating, scrape coating, rotary coating, spray coating or spattering.Compared with the common lithium piece negative electrode, the solid-state composite metal lithium negative electrode has the advantages that the problem of volume expansion of the negative electrodeis relieved, the deposition behavior of the metal lithium can be regulated and controlled, the growth of lithium dendrites can be inhibited, the safety property of a metal lithium battery is improved,and the cycle life of the metal lithium battery is prolonged; in the testing process of a lithium and copper semi-battery, the volume is expanded by 1 to 20% in the charge and discharge process, theobvious dendrites do not occur in the 20 to 5000 cycles of the battery, and the utilization rate is increased to 80 to 99.9999%.
Owner:TSINGHUA UNIV

Spherical porous silicon/carbon composite material as well as preparation method and application thereof

The invention discloses a spherical porous silicon/carbon composite material as well as a preparation method and application thereof. The spherical porous silicon/carbon composite material is structurally characterized in that a SiOx/C matrix, graphite with small particle size and a conductive agent are dispersed in porous amorphous carbon, wherein the average particle diameter is 12-25mu m; the method comprises the following steps of carrying out first coating on a SiOx raw material with powder pitch, and performing heat treatment so as to obtain a SiOx/C material; then performing ball milling by use of a wet method so as to reduce the particle diameter of powder, adding a carbon source adhesive, the graphite with the small particle diameter and the conductive agent, and performing high-speed dispersion, thereby obtaining pulp; and finally performing spray granulation and sintering on the pulp, thereby obtaining the final spherical porous silicon/carbon composite material. According to the invention, SiOx is dispersed in cracking carbon, the graphite and the conductive agent, so that SiOx volume expansion during a charge/discharge process is buffered, and the conductibility is enhanced; by virtue of the porous structure, the imbibition rate and cycle performance of the material can be effectively improved; by virtue of bitumencarb coating and high-heat treatment performed in advance, SiOx is prevented from being directly contacted with an electrolyte, and furthermore, the stability and first efficiency of the silicon/carbon material are improved.
Owner:ZHONGTIAN ENERGY STORAGE TECH

Silicon-carbon composite material, preparation method of silicon-carbon composite material, and lithium ion battery containing silicon-carbon composite material

The invention discloses a silicon-carbon composite material, a preparation method of the silicon-carbon composite material, and a lithium ion battery containing the silicon-carbon composite material. The preparation method comprises the following steps of: (1) reducing silicon dioxide by using metal with activity larger than that of silicon, so as to obtain a porous silicon-metal oxide composite; (2) corroding the metal oxide by acid, so as to obtain porous silicon; and (3) coating the surface of the porous silicon by carbon by taking a carbon source as a raw material, so as to obtain the silicon-carbon composite material. The silicon in the silicon-carbon composite material is prepared through using a metallothermic reduction method and porous silicon particles prepared through using the metallothermic reduction method are micron-sized and hardly agglomerate; the pore walls and the pore diameters in the porous silicon particles are nano-sized; compared with imporous micron-sized silicon powder, for the silicon-carbon composite material, the porous silicon particles have the characteristics that a diffusion path of a lithium ion in a silicon substrate is shortened, thus being beneficial to charging and discharging with large current, the pores can hold the volume expansion of silicon during silicon intercalation and the charging and discharging cycle life of the material is prolonged. The surfaces of the porous silicon particles are coated with a carbon layer with the certain pores and the conductivity of the silicon-carbon composite material is enhanced.
Owner:CHERY AUTOMOBILE CO LTD

MXene-based flexible composite negative electrode material and preparation method thereof

The invention discloses an MXene-based flexible composite negative electrode material and a preparation method thereof. According to the MXene-based flexible composite negative electrode material andthe preparation method thereof, a transition metal sulfide is loaded on a two-dimensional layered structure of the MXene material through a hydrothermal method. The agglomeration effect of the MXene material is overcome, and the collapse of a layered structure is prevented. Meanwhile, the energy density of the composite material is improved. The MXene material with high conductivity acts as a three-dimensional conductive network skeleton, so that the conductivity and the mechanical strength of the composite material are enhanced. The volume expansion of the transition metal polysulfide material in the charging process is buffered. Meanwhile, the material has good charge-discharge cycle stability. The composite material and expanded graphite are combined to prepare a self-supporting high-flexibility negative electrode material. In the charging and discharging process, the hydrophilic MXene material has high affinity to polysulfides. The electrochemical performance and the capacitive deionization performance of the composite negative electrode material can be further improved. Sulfides generated by transition metal sulfides are eliminated. The shuttle effect of the polysulfides is limited, and the service life of the negative electrode material is prolonged.
Owner:FUJIAN XFH NEW ENERGY MATERIALS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products