Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3737 results about "Nano silicon" patented technology

Carbon/silicon/carbon nano composite structure cathode material and preparation method thereof

InactiveCN102214817AControllable GeometrySimple processCell electrodesCarbon compositesGas phase
The invention discloses a carbon/silicon/carbon nano composite structure cathode material and a preparation method thereof, belonging to the technical field of electrochemical power supply technologies. The cathode material consists of a carbon-based conductive substrate, nano silicon and a nano carbon coating layer, wherein the nano silicon is uniformly distributed on the carbon-based conductive substrate; the nano carbon coating layer is arranged on the surface of the nano silicon; the carbon-based conductive substrate is porous carbon, a carbon nanotube or graphene; the nano silicon exists in the state of nanoparticles or nano films; the weight percentage of the nano silicon in the cathode material is 10-90 percent; and the thickness of the nano carbon coating layer is 0.1-10 nanometers. The preparation method comprises the following steps of: depositing nano silicon on the carbon substrate in a reaction space in oxygen-free atmosphere by adopting a chemical vapor deposition process; and coating nano carbon on the surface of the nano silicon by adopting the chemical vapor deposition process. In the obtained carbon/silicon/carbon composite cathode material, the volume change of a silicon electrode material is controlled effectively in the charging and discharging processes, the electrode structure is kept complete, the circulation volume is large, the circulation service life is long, and the electrochemical performance is high.
Owner:TSINGHUA UNIV

Silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof

The invention relates to a silicon-carbon composite negative electrode material and a preparation method thereof. The silicon-carbon composite negative electrode material successively comprises nano silicon / graphite particles, a first carbon coating layer and an organic cracking carbon layer from inside to outside. The nano silicon / graphite particles are globular or globular-like composite particles formed by employing graphite as an inner core of a volume expansion buffer substrate and coating a nano silicon particle layer; the first carbon coating layer comprises carbon nanotubes and / or amorphous carbon, the carbon nanotubes and / or amorphous carbon are interspersed in a gap network formed by gaps of the nano silicon particles and / or are coated outside the nano silicon particle layer, so that the nano silicon is tightly wrapped between the carbon nanotubes and / or between the carbon nanotubes and the graphite substrate, and besides, the material ion conductivity is effectively enhanced; the organic cracking carbon layer is an outermost coating layer of the silicon-carbon composite negative electrode material. The silicon-carbon composite negative electrode material has excellent cycle performance, excellent multiplying power charging and discharging performance and lower volume expansion effect.
Owner:BTR NEW MATERIAL GRP CO LTD

Lithium ion battery silicon-based composite anode material, preparation method thereof and battery

The invention relates to a lithium ion battery silicon-based composite anode material, a preparation method of the lithium ion battery silicon-based composite anode material, and a battery. The lithium ion battery silicon-based composite anode material adopts an embedded composite core-shell structure, a core has a structure formed by embedding nano silicon particles into a gap of an inner layer of hollowed graphite, and a shell is made from a non-graphite carbon material. According to the silicon-based composite anode material, mechanical grinding, mechanical fusing, isotropic compression processing and carbon coating technologies are combined, so that the nano silicon particles can be successfully embedded into the inner layer of the graphite and the surfaces of graphite particles are uniformly coated; the high-performance silicon-based composite anode material is obtained and is excellent in cycle performance (the 300-times cycle capacity retention ratio is more than 90%) and high in first efficiency (more than 90%); in addition, the silicon-based composite anode material is high in specific energy and compaction density, and can meet the requirements of a high-power density lithium ion battery; the preparation process is simple, the raw material cost is low, and the environment is protected.
Owner:BTR NEW MATERIAL GRP CO LTD

Preparation method of silicon and carbon-coated graphene composite cathode material

ActiveCN103050666ARealize in situ restorationThe preparation process is simple, convenient and practicalMaterial nanotechnologyCell electrodesCarbon coatedStructural stability
The invention discloses a preparation method of a silicon and carbon-coated graphene composite cathode material. The technical problem to be solved is to enhance the electronic conductivity of the silicon-based cathode material, buffer the volume effect produced in the process of deintercalation of the lithium in the silicon-based cathode material and enhance the structure stability in the circulation process of the material at the same time. The material is prepared by using a spray drying-thermally decomposing treatment process in the invention. The preparation method comprises the following steps of: evenly dispersing nano silicon and graphite micro powder in a dispersion solution of oxidized graphene, carrying out thermal treatment under an inert protection atmosphere after spray drying, subsequently cooling along a furnace to obtain the silicon and carbon-coated graphene composite cathode material. The extra binder does not need to add in the process of manufacturing balls in the invention and the outer oxidized graphene is thermally reduced in situ to graphene in the thermal treatment process of the composite precursor, so that the process is simple and easy to operate; and the practical degree is high. The prepared composite material has the advantages of great reversible capacity, designable capacity, good cycling performance and high-current discharging performance, high tap density and the like.
Owner:CENT SOUTH UNIV

NANO silicon-carbon composite material and preparation method thereof

The invention relates to a nano silicon-carbon composite negative material for lithium ion batteries and a preparation method thereof. A porous electrode composed of silica and carbon is taken as a raw material, and a nano silicon-carbon composite material of carbon-loaded nano silicon is formed by a molten salt electrolysis method in a manner of silica in-situ electrochemical reduction. Silicon and carbon of the material are connected by nano silicon carbide, and are metallurgical-grade combination, so that the electrochemical cycle stability of the nano silicon-carbon composite material is improved. The preparation method of the nano silicon-carbon composite material provided by the invention comprises the following steps: compounding a porous block composed of carbon and silica powder with a conductive cathode collector as a cathode; using graphite or an inert anode as an anode, and putting the cathode and anode into CaCl2 electrolyte or mixed salt melt electrolyte containing CaCl2 to form an electrolytic cell; applying voltage between the cathode and the anode; controlling the electrolytic voltage, the electrolytic current density and the electrolytic quantity, so that silica in the porous block is deoxidized into nano silicon by electrolytic reduction, and the nano silicon-carbon composite material for lithium ion batteries is prepared at the cathode.
Owner:CHINA AUTOMOTIVE BATTERY RES INST CO LTD

Preparation and application of lithium battery silicon-carbon composite material taking synthetic graphite as carrier

ActiveCN103346305AImprove integrity and compactnessSmall apertureCell electrodesCarbon sourceCarbon composites
The invention provides preparation and application of a lithium battery silicon-carbon composite material taking synthetic graphite as a carrier. The preparation method comprises the following steps of: dissolving nanometer silicon and synthetic graphite in a dispersant to obtain a uniform dispersion liquid, adding an organic carbon source, stirring uniformly to obtain a mixed liquid, feeding the mixed liquid into a closed circulation spray dryer to prepare composite precursor powder, pre-sintering for 3-10 hours at the temperature of 300-700 DEG C to obtain a silicon-carbon composite material subjected to primary carbon cladding; and further dissolving the silicon-carbon composite material subjected to primary carbon cladding with the organic carbon source in a dispersant, stirring to obtain a uniform mixed liquid, feeding the uniform mixed liquid into a second closed circulation spray dryer to prepare composite powder, and heating the powder for 6-18 hours at the temperature of 700-1000 DEG C, so as to obtain the lithium battery silicon-carbon composite material taking synthetic graphite as a carrier. The lithium battery silicon-carbon composite material prepared by the invention shows such excellent electrochemical properties as high first charge-discharge efficiency, high specific capacity and good cycle performance after being applied to a lithium battery.
Owner:中国有色桂林矿产地质研究院有限公司

Silicon-carbon composite material with nano micropores and preparation method as well as application thereof

The invention discloses a silicon-carbon composite material with nano micropores and a preparation method as well as application thereof. The material comprises nano-silicon (Si) particles and a carbon nanofiber matrix, wherein the nano-silicon particles are dispersed in the carbon nanofiber matrix; and nano pores and micropores communicated with the nano pores are distributed in the carbon nanofiber matrix. The method comprises the steps of dissolving the nano-Si particles and polyacrylonitrile (PAN) in a solvent to prepare a mixed spinning solution, then carrying out electrostatic spinning on the mixed spinning solution, and curing spinning trickles in a coagulating bath to obtain a porous PAN-Si composite nanofiber; and then carrying out oxidation and carbonization treatment in sequence to obtain the silicon-carbon composite material with a nano micropore structure. The silicon-carbon composite material is applied to preparation of lithium ion battery cathode materials. Compared with the prior art, the silicon-carbon composite material ensures the overall electron transport capacity of the material while reserving buffer space for expansion of the nano-Si particles.
Owner:深圳石墨烯创新中心有限公司

Silicon carbon composite negative electrode material for lithium ion battery as well as preparation method and applications of material

The invention is applicable to the field of novel materials, and provides a silicon carbon composite negative electrode material for a lithium ion battery, as well as a preparation method and applications of the material. The negative electrode material is of a nuclear-shell-type composite structure, and consists of nano silicon in the core, amorphous carbon at the middle layer and a one-dimensional nano carbon material at the outermost layer, wherein the amorphous carbon at the middle layer forms an elastic loose surface structure, and thus the circulating performance and multiplying performance of silicon are improved; a network structure built by the one-dimensional nano carbon material at the outermost layer not only plays a role in buffering mechanical stress, but also provides a rapid electric conducting channel for active silicon particles, and improves the circulating performance and multiplying performance of silicon further; and meanwhile, a three-dimensional electric-conducting heat-conducting network formed by the one-dimensional nano carbon material can conduct heat generated by a battery during the discharging process to the space around, and the safety performance of the battery is improved. The preparation method of the silicon carbon composite negative electrode material for the lithium ion battery is simple and feasible in process, environment-friendly and energy-saving, low in cost, and easy for industrialization.
Owner:RESEARCH INSTITUTE OF TSINGHUA UNIVERSITY IN SHENZHEN

Preparation method of active radical with surface-enhanced Raman scattering (SERS) effect

The invention provides a preparation method of an active radical with a surface-enhanced Raman scattering (SERS) effect, belongs to the technical field of spectrum detection, and relates to the preparation technology of the SERS active radical, which is rapid, has high sensitivity and performs a low trace detection function. The preparation method is characterized in that firstly, a nano porous silicon columnar array with a large specific surface area is prepared by utilizing a hydrothermal etching technology; afterwards, a nanowire structure of an II-VI group compound semiconductor (such as zinc oxide, titanium dioxide, cadmium sulfide, cadmium selenide, cadmium telluride, and the like) by utilizing a chemical vapor deposition method; and finally, nano particles of precious metal (such as gold, silver, copper and the like) are finally prepared on the nanowire structure by using a chemical reduction method, so as to obtain an active radical material. The preparation method has a wide application prospect in the aspects of clinical biomolecular fast recognition, trace chemical substance detection, biological sample analysis, and the like. The preparation method has the advantages that the preparation process of each material is simple, the condition is mild and the repetition rate reaches 100 percent.
Owner:BEIJING UNIV OF CHEM TECH

Porous silicon negative material of lithium ion battery and preparation method and application of material

The invention discloses a porous silicon negative material of a lithium ion battery, and a preparation method and application of the material. The method comprises the following steps of: reacting silicon alloy powder, which is taken as a raw material, with inorganic acid to generate porous silicon particles; and washing the porous silicon particles by an HF (Hydrogen Fluoride) acid solution to eliminate surface silicon oxide, and washing and drying the washed porous silicon particles so as to obtain the porous silicon material. The porous silicon material prepared by the method has a sponge-shaped structure which is formed by linking nano silicon particles; the particle sizes of the particles of the porous silicon negative material range from 0.01 micron to 50 microns; the specific surface area of the material is 30-600cm<2>/g; the porous silicon negative material can be taken as a negative material of a lithium ion battery; and in a lithium ion battery electrolyte, the porous silicon powder shows high specific discharge capacity and charge-discharge circulation stability. The porous silicon negative material has the advantages of low cost, simplicity and convenience in method and high electrochemical property, and can be applied to production of silicon negative materials of high-performance lithium ion batteries.
Owner:SHANGHAI INST OF SPACE POWER SOURCES

Expanded graphite and nano-silicon composite material, preparation method thereof, electrode plate and battery

The invention provides a preparation method of a high-density expanded graphite and nano-silicon composite material. The preparation method comprises the following steps: step S1, oxidizing graphite to manufacture graphite oxide; step S2, carrying out heat treatment on the graphite oxide to manufacture expanded graphite; step S3, mixing the expanded graphite with nano-silicon and a carbon source and carrying out ball-milling to obtain a high-density expanded graphite and nano-silicon composite material precursor comprising a plurality of graphite layers, the carbon source and the nano-silicon filled among the graphite layers; step S4, carrying out heat treatment on the high-density expanded graphite and nano-silicon composite material precursor so that the carbon source is converted into amorphous carbon; and step S5, depositing carbon or doped carbon on the surface of the high-density expanded graphite and nano-silicon composite material precursor after the heat treatment. Moreover, the invention also provides the high-density expanded graphite and nano-silicon composite material, an electrode plate applying the high-density expanded graphite and nano-silicon composite material, and a lithium ion battery applying the electrode plate.
Owner:SHENZHEN GRADUATE SCHOOL TSINGHUA UNIV

Silicon-carbon composite material, preparation method thereof and lithium ion battery employing same

ActiveCN102694155APossesses electrochemical reversible intercalation and delithiation performanceAlleviate chalking and sheddingMaterial nanotechnologyCell electrodesCarbon compositesSilicon monoxide
The invention discloses a silicon-carbon composite material, a preparation method thereof and a lithium ion battery prepared by adopting the material. The preparation method of the silicon-carbon composite material comprises the following steps: (1) mixing a composite material (silica-coated nano-silicon) manufactured by silicon monoxide, a porous carbon-based material and excessive hydrofluoric acid solution to obtain another composite material in which nano-silicon particles are compounded in pores of the porous carbon-based material; and (2) heating a composite material in which nano-silicon particles are compounded in pores of a high polymer-coated porous carbon-based material under an inert atmosphere to obtain the silicon-carbon composite material coated by porous carbon spheres. The process raw materials are accessible and simple to prepare. The silicon-carbon composite material has electrochemical reversible embedded lithium removal performance, greatly relieves efflorescence and falling-off phenomena of active particles in the charge-discharge process and has the high lithium storage capacity characteristic of silicon materials and the high cycling stability of carbon materials, and a battery prepared by the silicon-carbon composite material has better cyclicity.
Owner:CHERY AUTOMOBILE CO LTD

Nano-silicon amorphous carbon composition lithium ion battery cathode material and preparation method therefor

The invention relates to a nano-silicon amorphous carbon composition lithium ion battery cathode material and a preparation method therefore, belonging to the field of electrochemistry power supply. The cathode material consists of a substrate and granules distributed evenly thereon, wherein, cores of the nano-granules are nano-silicon while shells thereof are amorphous carbon obtained by pyrogenation of organic substance; and the substrate thereof is obtained by pyrogenation and carbonization of organic electrospun fibre; wherein, content range of monomer silicon is 10%-50% and content range of amorphous carbon is 90%-50%. The preparation method comprises that nano-silicon granules and electrospun-available organic substances are uniformly stirred and mixed in solvent; high-voltage static electrospun is carried out to obtain fibrous composition; temperature is maintained at 80-200 DEG C, so as to volatilize the solvent completely; and carbonization is then carried out at 400-1000 DEG C. The silicon/carbon composition cathode material prepared by the method can effectively control volume change of silicon electrode material in charging and discharging process. Therefore, the electrode structure is maintained integral; the volume is released gradually. And the silicon/carbon composition cathode material has large circular volume, long circular service life and excellent electrochemical performance.
Owner:TSINGHUA UNIV

Silicon-carbon cathode material for lithium ion battery and manufacturing method thereof

The invention discloses a silicon-carbon cathode material for a lithium ion battery and a manufacturing method thereof, aiming at solving the technical problem of improving the circulating performance of the silicon-carbon cathode material. The silicon-carbon cathode material comprises a silicon-carbon composite material and graphite powder, and comprises the components by mass ratio as follows: 1-20% of nano-silicon powder, 1-40% of carbon material presoma and the balance of graphite powder. The preparing method of the invention comprises the following steps: mixing, thermal processing, smashing, removing silicon powder with defects at the wrapping layer, mixing, thermal processing and smashing the silicon powder, and mixing the silicon powder with the graphite powder. Compared with the prior art, the material has higher specific capacity, and has a better circulating performance than that of a common alloy cathode material; the specific capacity of the material is 400-1000mAh/g according to different technological parameters, and the capacity retention ratio of the material is maintained to be above 95% with 50 times of circulation; and the preparing process is simple, and the material cost is low, so that the method is applicable to mass production of high-capacity lithium ion battery cathode materials.
Owner:BTR NEW MATERIAL GRP CO LTD

Lithium lanthanum titanium oxygen LLTO composite solid-state electrolyte material and synthesizing method thereof

The invention provides a La-Li-Ti-O (LLTO) composite solid electrolyte material containing an amorphous silicon oxidate grain boundary layer and the synthetic method thereof, and belongs to the field of the lithium ion battery. The material is characterized in that: composite ceramics of an amorphous nano-silicon oxidate layer 2 are contained in the position of the grain boundary between materialcrystal grains, and the induction of the amorphous nano-silicon oxidate layer 2 is realized by adopting the wet chemical process, in the wet chemical process, inexpensive organic silicide is adopted as the additive to be added to the LLTO solid electrolyte material, and when the silicone content is 1 to 10 percent, the LLTO composite solid electrolyte material containing the amorphous silicon oxidate grain boundary layer can be synthesized through agglomeration. The electrical conductivity of the grain boundary is obviously improved, thereby improving the total electrical conductivity of the material. The composite solid electrolyte material has the advantages that the preparation process is simple, the operation is easy, the experimental period is greatly shortened, and the synthesis temperature is reduced, the energy consumption and the production cost are saved.
Owner:TSINGHUA UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products