Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1049 results about "Raman scattering" patented technology

Raman scattering or the Raman effect /ˈrɑːmən/ is the inelastic scattering of photons by matter, meaning that there is an exchange of energy and a change in the light's direction. Typically this involves vibrational energy being gained by a molecule as incident photons from a visible laser are shifted to lower energy. This is called normal Stokes Raman scattering. The effect is exploited by chemists and physicists to gain information about materials for a variety of purposes by performing various forms of Raman spectroscopy. Many other variants of Raman spectroscopy allow Rotational energy to be examined (if gas samples are used) and electronic energy levels may be examined if an X-ray source is used in addition to other possibilities. More complex techniques involving pulsed lasers, multiple laser beams and so on are known.

Micro fluid control detection device based on surface-enhanced Raman scattering active substrate

The invention discloses a micro fluid control detection device based on surface-enhanced Raman scattering active substrate. The micro fluid control detection device is obtained by the method including the following steps: photoresist is coated on substrate in spinning way, prebaking, exposure, developing and fixing are sequentially carried out on the photoresist, so as to form photoresist graph in micro fluid shape; plasma dry etching is carried out on the photoresist, thus forming nano granular structure or nano fiber upright structure in vertical distribution on the substrate; the nano granular structure is a mask, anisotropic etching is carried out on the substrate, thus forming nano column on the substrate; metal nano granular layer is sputtered on the silicon nano column or nano fiber upright structure, so as to obtain surface-enhanced Raman scattering active substrate; and a silicon-PDMS double-layer structure SERS micro fluid control detection device which has no impurity interference and can be monitored in real time is formed by combining micro fluid device and processing technology thereof. The micro fluid control device not only can be used for detection of liquid analyte to be analyzed but also can be used for detection of colloid and gas analyte to be analyzed.
Owner:PEKING UNIV

Raman spectroscopic system with integrating cavity

The present invention provides an apparatus for measurement of Raman scattered radiation comprising. The apparatus comprises at least one source of electromagnetic radiation for producing an electromagnetic radiation beam characterized by a narrow spectral width, an integrating cavity having an interior and an exterior, wherein a sample is placed in said interior. The integrating cavity further having at least one port for insertion of the sample in the interior and for transmission of the electromagnetic radiation into and out from the interior, the at least one port extending from the exterior to said interior of said integrating cavity. The integrating cavity also comprises a first optical element for transmitting the electromagnetic radiation into the interior of the integrating cavity through the at least one port, and a second optical element for collecting Raman scattered electromagnetic radiation from the sample through the at least one port. The apparatus also comprises a spectrum analyzer for determining spectral composition of the Raman scattered electromagnetic radiation, a detector for measuring the Raman scattered electromagnetic radiation; and a system for determining concentration of at least one chemical compound from the measured Raman scattered electromagnetic radiation. The apparatus may also comprise a radiation expanding element. A method for measuring the concentration of one or more chemical compounds in a sample using Raman scattering is also provided.
Owner:TYCO HEALTHCARE GRP LP

Surface Raman and infrared spectroscopy double-enhanced detecting method based on graphene and nanogold compounding

Provided is a surface Raman and infrared spectroscopy double-enhanced detecting method based on graphene and nanogold compounding.According to the method, light sources, a lens, a graphene nanobelt and gold nanoparticle composite substrate, an infrared Fourier spectrograph and a Raman spectrometer are included.Infrared light waves and visible light waves emitted by the infrared light source and the laser light source respectively pass through a beam combiner and then irradiate the graphene nanobelt and gold nanoparticle composite substrate, after the light waves and trace molecules adsorbed on the substrate interact, reflected light is gathered by the focusing lens to enter the infrared Fourier spectrograph, and meanwhile scattered light is gathered into the Raman spectrometer.Raman scattering signals of the trace molecules can be enhanced through the local area plasma effect of the gold nanoparticles, and meanwhile infrared absorption spectrum signals of the trace molecules can be dynamically enhanced through the graphene surface plasma effect within the broadband range.According to the method, double enhancement of surface Raman and broadband infrared spectroscopy signals is achieved on the same substrate, and the advantages of being wide in enhancement wave band, high in detecting sensitivity, wide in detected matter variety range, good in stability and the like are achieved.
Owner:CHONGQING UNIV

Preparation method of active radical with surface-enhanced Raman scattering (SERS) effect

The invention provides a preparation method of an active radical with a surface-enhanced Raman scattering (SERS) effect, belongs to the technical field of spectrum detection, and relates to the preparation technology of the SERS active radical, which is rapid, has high sensitivity and performs a low trace detection function. The preparation method is characterized in that firstly, a nano porous silicon columnar array with a large specific surface area is prepared by utilizing a hydrothermal etching technology; afterwards, a nanowire structure of an II-VI group compound semiconductor (such as zinc oxide, titanium dioxide, cadmium sulfide, cadmium selenide, cadmium telluride, and the like) by utilizing a chemical vapor deposition method; and finally, nano particles of precious metal (such as gold, silver, copper and the like) are finally prepared on the nanowire structure by using a chemical reduction method, so as to obtain an active radical material. The preparation method has a wide application prospect in the aspects of clinical biomolecular fast recognition, trace chemical substance detection, biological sample analysis, and the like. The preparation method has the advantages that the preparation process of each material is simple, the condition is mild and the repetition rate reaches 100 percent.
Owner:BEIJING UNIV OF CHEM TECH

Common detector for combined raman spectroscopy-optical coherence tomography

In one aspect of the present invention, an apparatus includes a first light source for generating a broadband light, and a second light source for generating a monochromatic light, a beamsplitter optically coupled to the first light source for receiving the broadband light and splitting the received broadband light into a reference light and a sample light, a reference arm optically coupled to the beamsplitter for receiving the reference light and returning the received reference light into the beamsplitter, and a sample arm optically coupled to the beamsplitter and the second light source for combining the sample light and the monochromatic light, delivering the combined sample and monochromatic light to the target of interest, collecting a backscattering light and a Raman scattering light that are generated from interaction of the sample light and the monochromatic light with the target of interest, respectively, returning the backscattering light into the beamsplitter so as to generate an interference signal between the returned backscattering light and the returned reference light in the beamsplitter, and directing the Raman scattering light in an output optical path, and a single detector optically coupled to the beamsplitter for collecting the interference signal.
Owner:ACADEMISCH MEDISCH CENT BIJ DE UNIV VAN +1

Detecting method suitable for optical fiber distributed temperature and stress sensing device

The invention discloses a detection method suitable for a sensing device of optical fiber distribution type temperature and stress. The sensing device of the optical fiber distribution type temperature and stress mainly comprises a light source module (1), a frequency discriminator module (2), and a thermo tank module (3), which are all connected with one another by polarization-preserving fiber. The detection method of the invention is a direct detection method which is based on optical fiber Raman scattering used as a carrier wave of temperature information, brillouin scattering used as a carrier wave of stress, rayleigh scattering used for measuring the relative frequency of a outgoing laser beam to the frequency discriminator and Fabry-Perot etalon used for discriminating frequency and distributing sensing temperature and stress. The invention has the advantages of simple structure, fine stability, avoidance of outgoing power of the light source during coherent detection, and outgoing frequency of the light source. Instability of acoustic modulation or electro-optic modulation frequency is directly referred to measure errors and the direct detection technology of frequency discrimination is not sensitive to the frequency drift of the light source and the fluctuation of signal intensity.
Owner:BEIHANG UNIV

Applications of laser-processed substrate for molecular diagnostics

Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through the excitation of plasmon modes and their coupling to molecular vibrational modes. One of the chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.
Owner:EBSTEIN STEVEN M
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products