Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2001 results about "Fluid control" patented technology

Hydraulic device for the injection of bone cement in percutaneous vertebroplasty

The present invention relates to the medical field, in particular relates to the practice of percutaneous vertebroplasty where a pair of syringes in the distal extreme of a lengthened hydraulic device, are united by a camera of intermediate connection of larger diameter (pressure exerting body) or modified inverted syringe tube with a bolster, a hydraulic connecting tube of flexible material that transmits the pressure of the smaller diameter manual or impulsion syringe in the proximal extreme of the device toward the intermediate cylindrical larger diameter camera (pressure exerting body), this camera is in an inverted position with regard to the first syringe (fluid control), this intermediate camera has a moving piston longitudinal to the axis of the cylinder that is controlled with the first syringe (manual) and in cooperation with the atmospheric pressure. The injecting syringe loaded with bone cement is coupled with the bolster of the body of pressure, and to the needle that drives the cement toward the interior of the bone. The intermediate camera (pressure exerting body) together with the hydraulic tube and the manual syringe form a hydraulic press system (F/A=f/a) that allows to increase in a potential way the pressure exerted in the first syringe and to make the injection of polymethylmethacrylate (PMMA) at an approximate distance of 1.0 m to 1.5 m.

Replaceable and/or Easily Removable Needle Systems for Dermal and Transdermal Cryogenic Remodeling

The present invention generally provides improved medical devices, systems, and methods. Embodiments may be particularly well suited for the treatment of dermatological and/or cosmetic defects, and alternative embodiments may be configured for treatment of a wide range of target tissues. Some embodiments of the present invention apply cooling with at least one small, tissue-penetrating probe, the probe often comprising a needle having a size suitable for inserting through an exposed surface of the skin of a patient without leaving a visible scar. The cooling may remodel one or more target tissue so as to effect a desired change in a composition of the target tissue and/or a change in its behavior. Exemplary embodiments make use of replaceable needle probes supported by a probe body handle, with small needle probes often being replaced during treatment of a single patient. Unlike the large format cryogenic cooling systems of the past, small cryogenic cooling needle probes may dull or be damaged by insertion. Careful control over the control of cryogenic cooling fluid into a needle probe can allow the length of the active cooling to be controlled through depletion of liquid from an evaporating cryogenic cooling flow. Hence, even needles having similar external structures may provide differing lengths of an iceball along the needle axis. Surprisingly, small cryogenic cooling needles and/or other cryogenic cooling probes having a lubricious coating will allow safe removal of the probe from the treatment region while at a least a portion of the tissue remains frozen, significantly decreasing the overall time for a procedure involving many insertion/freeze/removal cycles.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products