Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3061 results about "Target tissue" patented technology

Electrosurgical jaw structure for controlled energy delivery

A working end of a surgical instrument that carries first and second jaws for delivering energy to tissue. In a preferred embodiment, at least one jaw of the working end defines a tissue-engagement plane that contacts the targeted tissue. The cross-section of the engagement plane reveals that it defines a surface conductive portion that overlies a variably resistive matrix of a temperature-sensitive resistive material or a pressure-sensitive resistive material. An interior of the jaw carries a conductive material or electrode that is coupled to an Rf source and controller. In an exemplary embodiment, the variably resistive matrix can comprise a positive temperature coefficient (PTC) material, such as a ceramic, that is engineered to exhibit a dramatically increasing resistance (i.e., several orders of magnitude) above a specific temperature of the material. In use, the engagement plane will apply active Rf energy to captured tissue until the point in time that the variably resistive matrix is heated to its selected switching range. Thereafter, current flow from the conductive electrode through the engagement surface will be terminated due to the exponential increase in the resistance of variably resistive matrix to provide instant and automatic reduction of Rf energy application. Further, the variably resistive matrix can effectively function as a resistive electrode to thereafter conduct thermal energy to the engaged tissue volume. Thus, the jaw structure can automatically modulate the application of energy to tissue between active Rf heating and passive conductive heating of captured tissue to maintain a target temperature level.
Owner:ETHICON ENDO SURGERY INC

Surgical staple-clip and applier

InactiveUS20060100649A1Constrict or occludeNourishment to the body tissue is maintainedStaplesNailsSurgical stapleSurgical site
A surgical staple-clip including a clip component and a securing member is used in a wide range of surgical procedures. The staple-clip may be introduced to a surgical site in an un-assembled condition through a small port or trocar. An applier for the staple-clip comprising a pair of opposed jaw-like channels is provided to position and apply the clip component and the securing member. The clip component is positioned around a target tissue and is compressed or clamped upon the tissue using only the force required for a specific surgical procedure such as occlusion, ligation or fixation. When the clip component is properly applied, the securing member is urged forward and over the clip component to secure the staple-clip. The clip component may include traction enhancement features such as surface interruptions, bumps, valleys and ridges. With the staple-clip of the invention, the force required to constrict or occlude the tissue is separate from the force required to secure and maintain the staple-clip in position and, as a result, the body tissue is not over-compressed and nourishment to the body tissue is maintained. Other aspects of the invention include thumb actuated clip appliers for use in hand assisted laparoscopy (HAL). In one embodiment, a clip applier includes a handle and a thumb actuated mechanism that is used to slidably release clips onto a body tissue or vessel by sliding the thumb actuated mechanism forward and backward using only one hand. In another aspect of the invention, a two-stage clip is disclosed having a clip component and a staple component for securing the clip after it has been properly positioned.
Owner:APPL MEDICAL RESOURCES CORP

Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue

The present invention provides an apparatus and a method for producing a virtual electrode within or upon a tissue to be treated with radio frequency alternating electric current, such tissues including but not limited to brain, liver, cardiac, prostate, breast, and vascular tissues and neoplasms. An apparatus in accordance with the present invention includes a source of super-cooled fluid for selectively providing super-cooled fluid to the target tissue to cause a temporary cessation of cellular or electrical activity, a supply of conductive or electrolytic fluid to be provided to the target tissue, and alternating current generator, and a processor for creating, maintaining, and controlling the ablation process by the interstitial or surficial delivery of the fluid to a tissue and the delivery of electric power to the tissue via the virtual electrode. A method in accord with the present invention includes delivering super-cooled fluid to the target tissue to cause a temporary cessation of cellular or electrical activity, evaluating whether the temporary cessation of cellular or electrical activity is the desired cessation of cellular or electrical activity, and if so, delivering a conductive fluid to the predetermined tissue ablation site for a predetermined time period, applying a predetermined power level of radio frequency current to the tissue, monitoring at least one of several parameters, and adjusting either the applied power and/or the fluid flow in response to the measured parameters.
Owner:MEDTRONIC INC

High frequency thermal ablation of cancerous tumors and functional targets with image data assistance

This invention relates to the destruction of pathological volumes or target structures such as cancerous tumors or aberrant functional target tissue volumes by direct thermal destruction. In the case of a tumor, the destruction is implemented in one embodiment of the invention by percutaneous insertion of one or more radiofrequency probes into the tumor and raising the temperature of the tumor volume by connection of these probes to a radiofrequency generator outside of the body so that the isotherm of tissue destruction enshrouds the tumor. The ablation isotherm may be predetermined and graded by proper choice of electrode geometry and radiofrequency (rf) power applied to the electrode with or without temperature monitoring of the ablation process. Preplanning of the rf electrode insertion can be done by imaging of the tumor by various imaging modalities and selecting the appropriate electrode tip size and temperature to satisfactorily destroy the tumor volume. Computation of the correct three-dimensional position of the electrode may be done as part of the method, and the planning and control of the process may be done using graphic displays of the imaging data and the rf ablation parameters. Specific electrode geometries with adjustable tip lengths are included in the invention to optimize the electrodes to the predetermined image tumor size.
Owner:COVIDIEN AG

Treatment of tissue in sphincters, sinuses and orifices

The invention provides a method and system for ablation of body structures or tissue in a sphincter, sinus or orifice such as the rectum, colon, esophagus, vagina, penis, larynx or pharynx. In one aspect of the invention, the environment surrounding the targeted ablation region can be isolated or controlled by blocking the flow of gases or liquids using an inflatable balloon positioned immediately adjacent to the tissue that is to be ablated. In a preferred embodiment, the inflatable balloon also serves to anchor the catheter in place and prevent the catheter from being expelled from the body. The inflatable balloon also insures that locally administered drug remain in the area where most needed. In a second aspect of the invention, positive pressure is used to inflate the balloon. Inflation of balloon triggers the extension of at least one curvilinear electrode into the targeted tissue. Negative pressure deflates the air sac and helps retract the curvilinear electrodes so as to allow the catheter to be removed from the body without damaging adjacent body structures. In a third aspect of the invention, the electrodes are coupled to sensors that measure properties of the target region such as temperature and impedance. Measurement of these properties permits the use of feedback technique to control delivery of the RF energy and administration of fluids for cooling and hydrating the affected tissues. In a fourth aspect of the invention, the catheter includes an optical path that can be coupled to external viewing apparatus. In this way, the position of the electrodes in the body can be determined by fluoroscopic or fiber optic techniques.
Owner:NOVASYS MEDICAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products