Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

316 results about "Blood Vessel Tissue" patented technology

No , blood vessels are not tissues , they are simple tube like structures in which blood flows. A tissue is a group of similar cells having common origin and perform similar function.

Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue

The present invention provides an apparatus and a method for producing a virtual electrode within or upon a tissue to be treated with radio frequency alternating electric current, such tissues including but not limited to brain, liver, cardiac, prostate, breast, and vascular tissues and neoplasms. An apparatus in accordance with the present invention includes a source of super-cooled fluid for selectively providing super-cooled fluid to the target tissue to cause a temporary cessation of cellular or electrical activity, a supply of conductive or electrolytic fluid to be provided to the target tissue, and alternating current generator, and a processor for creating, maintaining, and controlling the ablation process by the interstitial or surficial delivery of the fluid to a tissue and the delivery of electric power to the tissue via the virtual electrode. A method in accord with the present invention includes delivering super-cooled fluid to the target tissue to cause a temporary cessation of cellular or electrical activity, evaluating whether the temporary cessation of cellular or electrical activity is the desired cessation of cellular or electrical activity, and if so, delivering a conductive fluid to the predetermined tissue ablation site for a predetermined time period, applying a predetermined power level of radio frequency current to the tissue, monitoring at least one of several parameters, and adjusting either the applied power and / or the fluid flow in response to the measured parameters.
Owner:MEDTRONIC INC

Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue

The present invention provides an apparatus and a method for producing a virtual electrode within or upon a tissue to be treated with radio frequency alternating electric current, such tissues including but not limited to liver, lung, cardiac, prostate, breast, and vascular tissues and neoplasms. An apparatus in accord with the present invention includes a supply of a conductive or electrolytic fluid to be provided to the patient, an alternating current generator, and a processor for creating, maintaining, and controlling the ablation process by the interstitial or surficial delivery of the fluid to a tissue and the delivery of electric power to the tissue via the virtual electrode. A method in accord with the present invention includes delivering a conductive fluid to a predetermined tissue ablation site for a predetermined time period, applying a predetermined power level of radio frequency current to the tissue, monitoring at least one of several parameters, and adjusting either the applied power and / or the fluid flow in response to the measured parameters.
Owner:MEDTRONIC INC

Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue

The present invention provides an apparatus and a method for producing a virtual electrode within or upon a tissue to be treated with radio frequency alternating electric current, such tissues including but not limited to liver, lung, cardiac, prostate, breast, and vascular tissues and neoplasms. An apparatus in accord with the present invention includes a supply of a conductive or electrolytic fluid to be provided to the patient, an alternating current generator, and a processor for creating, maintaining, and controlling the ablation process by the interstitial or surficial delivery of the fluid to a tissue and the delivery of electric power to the tissue via the virtual electrode. A method in accord with the present invention includes delivering a conductive fluid to a predetermined tissue ablation site for a predetermined time period, applying a predetermined power level of radio frequency current to the tissue, monitoring at least one of several parameters, and adjusting either the applied power and / or the fluid flow in response to the measured parameters.
Owner:MEDTRONIC INC

Non-destructive tissue repair and regeneration

ActiveUS20070185568A1Facilitate healing and regenerationEasy to fixStentsAdditive manufacturing apparatusNon destructiveTissue repair
A surgical stent made of biocompatible material for implantation in human tissue to enable blood and nutrients to flow from an area of vascular tissue to an area of tissue with little or no vasculature.
Owner:HOWMEDICA OSTEONICS CORP

Black blood angiography method and apparatus

To produce a black body angiographic image representation of a subject (42), an imaging scanner (10) acquires imaging data that includes black blood vascular contrast. A reconstruction processor (38) reconstructs a gray scale image representation (100) from the imaging data. A post-acquisition processor (46) transforms (130) the image representation (100) into a pre-processed image representation (132). The processor (46) assigns (134) each image element into one of a plurality of classes including a black class corresponding to imaged vascular structures, bone, and air, and a gray class corresponding to other non-vascular tissues. The processor (46) averages (320) intensities of the image elements of the gray class to obtain a mean gray intensity value (322), and replaces (328) the values of image elements comprising non-vascular structures of the black class with the mean gray intensity value.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV +1

Catheter device

Catheter device comprising a catheter (2), particularly an intravascular catheter, for insertion into an organ or vessel of the human or animal body, with a device for ablation of the adjacent organ tissue or vessel tissue using high-frequency currents in the region of the tip of the catheter, a device (3, 11, 12, 18, 19, 23, 24) being integrated for capturing images of the organ or vessel in the region of the tip of the catheter (10, 17, 22).
Owner:SIEMENS HEALTHCARE GMBH

Compositions and methods of use of targeting peptides for diagnosis and therapy

The compositions and methods include targeting peptides selective for tissue selective binding, particularly prostate and / or bone cancer, or adipose tissue. The methods may comprise targeting peptides that bind, for example, cell surface GRP78, IL-11Rα in blood vessels of bone, or prohibitin of adipose vascular tissue. These peptides may be used to induce targeted apoptosis in the presence or absence of at least one pro-apoptotic peptide. Antibodies against such targeting peptides, the targeting peptides, or their mimeotopes may be used for detection, diagnosis and / or staging of a condition, such as prostate cancer or metastatic prostate cancer.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Endoluminal prosthetic devices having fluid-absorbable compositions for repair of a vascular tissue defect

Endoluminal prosthetic devices having fluid-absorbable compositions for repair of vascular tissue defects, such as an aneurysm or dissection, are disclosed herein. A prosthesis for repairing an opening or cavity within a target vessel region configured in accordance herewith includes a tubular body sized to substantially cover the opening or cavity, and having channels formed in a wall thereof. The channels can include a fluid-absorbable composition deposited therein and which is configured to absorb fluid (e.g., blood) and swell within the channels, thereby providing radial expansion of the tubular body in situ.
Owner:MEDTRONIC VASCULAR INC

Method and device for minimally invasive implantation of biomaterial

A minimally invasive method of placing a delivery device substantially adjacent to vascular tissue and a device for use with such a method are disclosed. The delivery device may be a flexible biological construct with a flexible tethering means. The delivery device may be percutaneously inserted near vascular tissue such as, for example, peritoneal tissue. When the delivery device has been inserted, the tether may be used to pull the delivery device toward the vascular tissue and secure the device thereto. Contact between the front surface of the delivery device and the vascular tissue may be maintained by making and keeping the tether substantially taut. The delivery device may serve accomplish sustained delivery of active agents.
Owner:ETHICON ENDO SURGERY INC

Methods and devices for reducing the mineral content of a region of non-intimal vascular tissue

Methods and devices for reducing the mineral content of a region of non-intimal vascular tissue are provided. In the subject methods, an isolated local environment that includes the region to be demineralized is produced. The pH of the local environment is then reduced to a subphysiologic level, e.g. by flushing with an acidic dissolution fluid, for a period of time sufficient for the mineral content of the region to be reduced. The devices of the subject invention are characterized by comprising a means for producing an isolated local environment that includes a non-intimal region of vascular tissue. Also provided are kits for practicing the subject methods.
Owner:CARDINAL HEALTH SWITZERLAND 515 GMBH

Optical Energy-Based Methods and Apparatus for Tissue Sealing

Optical energy-based methods and apparatus for sealing vascular tissue involves deforming vascular tissue to bring different layers of the vascular tissue into contact each other and illuminating the vascular tissue with a light beam having at least one portion of its spectrum overlapping with the absorption spectrum of the vascular tissue. The apparatus may include two deforming members configured to deform the vascular tissue placed between the deforming members. The apparatus may also include an optical system that has a light source configured to generate light, a light distribution element configured to distribute the light across the vascular tissue, and a light guide configured to guide the light from the light source to the light distribution element. The apparatus may further include a cutting member configured to cut the vascular tissue and to illuminate the vascular tissue with light to seal at least one cut surface of the vascular tissue.
Owner:TYCO HEALTHCARE GRP LP

Methods and devices for reducing the mineral content of vascular calcified lesions

Methods and devices are provided for at least reducing the mineral content of a vascular calcified lesion, i.e. a calcified lesion present on the vascular tissue of a host. In the subject methods, the local environment of the lesion is maintained at a subphysiologic pH for a period of time sufficient for the mineral content of the lesion to be reduced, e.g. by flushing the lesion with a fluid capable of locally increasing the proton concentration in the region of the lesion. Also provided are systems and kits for practicing the subject methods. The subject methods and devices find particular use in the treatment of vascular diseases associated with the presence of calcified lesions on vascular tissue.
Owner:CARDINAL HEALTH SWITZERLAND 515 GMBH

Optical Energy-Based Methods and Apparatus for Tissue Sealing

Optical energy-based methods and apparatus for sealing vascular tissue involves deforming vascular tissue to bring different layers of the vascular tissue into contact each other and illuminating the vascular tissue with a light beam having at least one portion of its spectrum overlapping with the absorption spectrum of the vascular tissue. The apparatus may include two deforming members configured to deform the vascular tissue placed between the deforming members. The apparatus may also include an optical system that has a light source configured to generate light, a light distribution element configured to distribute the light across the vascular tissue, and a light guide configured to guide the light from the light source to the light distribution element. The apparatus may further include a cutting member configured to cut the vascular tissue and to illuminate the vascular tissue with light to seal at least one cut surface of the vascular tissue.
Owner:TYCO HEALTHCARE GRP LP

Optical Energy-Based Methods and Apparatus for Tissue Sealing

Optical energy-based methods and apparatus for sealing vascular tissue involves deforming vascular tissue to bring different layers of the vascular tissue into contact each other and illuminating the vascular tissue with a light beam having at least one portion of its spectrum overlapping with the absorption spectrum of the vascular tissue. The apparatus may include two deforming members configured to deform the vascular tissue placed between the deforming members. The apparatus may also include an optical system that has a light source configured to generate light, a light distribution element configured to distribute the light across the vascular tissue, and a light guide configured to guide the light from the light source to the light distribution element. The apparatus may further include a cutting member configured to cut the vascular tissue and to illuminate the vascular tissue with light to seal at least one cut surface of the vascular tissue.
Owner:TYCO HEALTHCARE GRP LP

System and method for characterizing vascular tissue

A system and method is provided for using ultrasound data backscattered from vascular tissue to estimate the transfer function of a catheter and / or substantially synchronizing the acquisition of blood-vessel data to an identifiable portion of heartbeat data. In one embodiment, a computing device and catheter acquire RF backscattered data from a vascular structure. The backscattered ultrasound data is then used to estimate at least one transfer function. The transfer function(s) can then be used to calculate response data for the vascular tissue. Another embodiment includes an IVUS console connected to a catheter and a computing device that acquires RF backscattered data from a vascular structure. Based on the backscattered data, the computing device estimates the catheter's transfer function and to calculate response data for the vascular tissue. The response data and histology data are then used to characterize at least a portion of the vascular tissue.
Owner:VOLCANO CORP +1

Vascular access devices and systems

InactiveUS6656151B1Vascular deterioration can be seriously acceleratedReduces and even avoids errorStentsBalloon catheterVascular Access DevicesBlood Vessel Tissue
Vascular access systems and devices for facilitating repeated access to a blood vessel. These systems and devices can be used in external treatment of blood, such as dialysis, and in intra-venous administration of medicines, such as heparin, for extended periods of time, while avoiding deleterious effects such as those derived from repeated puncturing of the blood vessel tissues or exposure of such tissues to abnormal fluid flows. The vascular access systems comprise an anastomosis graft vessel, an occlusal balloon, and a port device for accessing the occlusal balloon. Occlusal balloons can be self-contained, they can rely on osmosis, and they can serve as the support of an agent to which the blood stream is exposed, either by transport or by mere contact. In addition, occlusal balloons can adopt a distended and a collapsed configuration, the latter allowing for blood flow through the anastomosis graft vessel.
Owner:VITAL ACCESS CORP

Methods and devices for reducing the mineral content of a region of non-intimal vascular tissue

Methods and devices for reducing the mineral content of a region of non-intimal vascular tissue are provided. In the subject methods, an isolated local environment that includes the region to be demineralized is produced. The pH of the local environment is then reduced to a subphysiologic level, e.g. by flushing with an acidic dissolution fluid, for a period of time sufficient for the mineral content of the region to be reduced. The devices of the subject invention are characterized by comprising a means for producing an isolated local environment that includes a non-intimal region of vascular tissue. Also provided are kits for practicing the subject methods.
Owner:CORDIS CORP

Cannula systems and methods of use

Systems and methods for coupling devices such as a ventricular assist device to vascular tissues, such as a heart. In one version, a method is provided for attaching a device to vascular tissue for fluid flow. The device includes a cannula coupled to a cuff, and the method includes coupling the cuff to the vascular tissue, penetrating the vascular tissue by inserting a penetration device through the cannula, and inserting a first end of the cannula through the cuff and into the vascular tissue.
Owner:ABIOMED

Drug delivery device

A medical device for drug delivery is provided which includes a stent structure and a biologically active structure attached to the stent structure. The biologically active structure is comprised of a plurality of layers, including a first layer having a first biologically active compound, such as an anti-proliferative, cytostatic or cytotoxic drug, for delivery at a first target site, such as the vascular tissue; a second layer having a second biologically active compound, such as a growth factor, for delivery into the arterial lumen and capable of promoting engraftment and differentiation of hematopoietic stem cells and / or endothelial progenitor cells at a second site of myocardial injury; and a third, middle layer which is substantially or selectively impermeable to both the first and second biologically active compounds.
Owner:AKHTAR ADIL JAMAL +1

Optical energy-based methods and apparatus for tissue sealing

Optical energy-based methods and apparatus for sealing vascular tissue involves deforming vascular tissue to bring different layers of the vascular tissue into contact each other and illuminating the vascular tissue with a light beam having at least one portion of its spectrum overlapping with the absorption spectrum of the vascular tissue. The apparatus may include two deforming members configured to deform the vascular tissue placed between the deforming members. The apparatus may also include an optical system that has a light source configured to generate light, a light distribution element configured to distribute the light across the vascular tissue, and a light guide configured to guide the light from the light source to the light distribution element. The apparatus may further include a cutting member configured to cut the vascular tissue and to illuminate the vascular tissue with light to seal at least one cut surface of the vascular tissue.
Owner:COVIDIEN LP

Methods for external treatment of blood

Vascular access systems, devices and methods for facilitating repeated access to a blood vessel. These systems, devices and methods can be used in external blood treatment, such as dialysis, and in intra-venous administration of medicines, such as heparin, for extended periods of time, while avoiding deleterious effects such as those derived from repeated puncturing of the blood vessel tissues or exposure of such tissues to abnormal fluid flows. The vascular access systems comprise an anastomosis graft vessel, an occlusal device, such as an occlusal balloon, and a port device for accessing the occlusal device. Occlusal devices can be self-contained, they can rely on osmosis, and they can serve as the support of an agent to which the blood stream is exposed, either by transport or by mere contact. In addition, occlusal devices can adopt a distended and a collapsed configuration, the latter allowing for blood flow through the anastomosis graft vessel.
Owner:VITAL ACCESS CORP

Optical energy-based methods and apparatus for tissue sealing

Optical energy-based methods and apparatus for sealing vascular tissue involves deforming vascular tissue to bring different layers of the vascular tissue into contact each other and illuminating the vascular tissue with a light beam having at least one portion of its spectrum overlapping with the absorption spectrum of the vascular tissue. The apparatus may include two deforming members configured to deform the vascular tissue placed between the deforming members. The apparatus may also include an optical system that has a light source configured to generate light, a light distribution element configured to distribute the light across the vascular tissue, and a light guide configured to guide the light from the light source to the light distribution element. The apparatus may further include a cutting member configured to cut the vascular tissue and to illuminate the vascular tissue with light to seal at least one cut surface of the vascular tissue.
Owner:TYCO HEALTHCARE GRP LP

Device, systems and methods for localized heating of a vessel and/or in combination with MR/NMR imaging of the vessel and surrounding tissue

Featured are devices, systems and methods for localized heating of a vessel as well as devices, systems and methods for MR / NMR imaging of a vessel while locally heating a portion of the vessel. More particularly featured are such devices, systems and methods for use when administering or delivering therapeutic agents including genes and / or drugs to the tissues of the vessel. Such a method includes positioning a thermal energy delivery device proximal a target site with the vessel of a body and activating the thermal energy delivery device so as to heat the target site thereby locally increasing a temperature of tissue at the target site. In further embodiments, the method includes introducing a therapeutic medium to the target site over a predetermined time period, and wherein said activating occurs at least one of before, during or after said step of introducing.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Methods and reagents for non-invasive imaging of atherosclerotic plaque

The invention provides reagents and methods for their use in in vivo diagnosis of atherosclerosis. In particular, the invention provides monoclonal antibodies which bind oxidation specific epitopes in atherosclerotic plaque lesions, such as those which occur in oxidized LDL, in vivo with high binding specificity; i.e., at about 10 to 20 times the rate of binding of the antibodies to adjacent normal arterial tissue. When detectably labeled and administered according to the invention, the antibodies are clearly imaged when bound to atherosclerotic plaque using known imaging techniques and devices, such as a gamma camera. In addition, the invention provides a method for substantially reducing interference from background signal in the blood pool into which such agents are introduced for detection and quantification of atherosclerotic plaque burden in the cardiovascular tissue of a host.
Owner:RGT UNIV OF CALIFORNIA

Tissue graft

The present invention relates to a method of preparing a tissue graft material. The invention also relates to a multipurpose tissue graft material and to methods of using same as a replacement for vascular and non-vascular tissue.
Owner:CRYOLIFE

Medicine eluting balloon catheter

The invention provides a medicine eluting balloon catheter, which comprises a balloon catheter body and a medicine coating, wherein the balloon catheter body comprises a balloon; the outside surface of the balloon has a plurality of grooves; and the medicine coating is coated on the grooved part and flat part of the outside surface of the balloon. The medicine eluting balloon catheter is characterized in that grooves protrude in a reversed direction when the balloon is fully expanded. The medicine eluting balloon catheter disclosed by the invention can carry more medicines and reduce loss of the medicines in a conveying process; and the medicine eluting balloon catheter directly pour and cast medicines remaining in the grooves into blood through reversed protrusion to accelerate the release of the medicines and to increase the medicine concentration at a target position, so that the medicines can quickly concentrate and act on the target position to well prevent the blood vessel tissue at the target position from regeneration and restenosis.
Owner:SHANGHAI MICROPORT MEDICAL (GROUP) CO LTD

Method and Apparatus for Vascular Tissue Sealing with Reduced Energy Consumption

An end effector assembly for use with an electrosurgical instrument is provided. The end effector assembly includes a pair of opposing jaw members configured to grasp tissue therebetween. Each of the opposing jaw members includes a non conducting tissue contact surface and an energy delivering element configured to perforate the tissue to create an opening, extract elastin and collagen from the tissue and denaturize the elastin and the collagen in the vicinity of the opening.
Owner:TYCO HEALTHCARE GRP LP

Method and apparatus for vascular tissue sealing with reduced energy consumption

An end effector assembly for use with an electrosurgical instrument is provided. The end effector assembly includes a pair of opposing jaw members configured to grasp tissue therebetween. Each of the opposing jaw members includes a non conducting tissue contact surface and an energy delivering element configured to perforate the tissue to create an opening, extract elastin and collagen from the tissue and denaturize the elastin and the collagen in the vicinity of the opening.
Owner:TYCO HEALTHCARE GRP LP

Blood vessel extracting method

The invention discloses a blood vessel extracting method which comprises the following steps of: acquiring a three-dimensional image composed of a plurality of slice images and taking a plurality of connected domains based on gray information of pixels in the slice images; determining a seed point based on the circular degrees of the connected domains; performing, by using the seed point as a starting point, region growing on the three-dimensional image based on a threshold a and acquiring a first image; performing, by using the seed point as a starting point, region growing on the first image based on a first threshold and acquiring a blood vessel mask; obtaining a first subtraction image by subtracting the first image from the blood vessel mask; roughly dividing the first subtraction image and morphologically processing an initial mask to obtain a skeletal mask; obtaining a second subtraction image including the plurality of connected domains by subtracting the first image from the skeletal mask; connecting the plurality of connected domains based on a blood vessel growth condition to obtain a blood vessel extraction result. The blood vessel extracting method can accurately and effectively extract blood vessel tissue.
Owner:WUHAN UNITED IMAGING LIFE SCI INSTR CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products