Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

18375 results about "In vivo" patented technology

Studies that are in vivo (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and plants, as opposed to a tissue extract or dead organism. This is not to be confused with experiments done in vitro ("within the glass"), i.e., in a laboratory environment using test tubes, Petri dishes, etc. Examples of investigations in vivo include: the pathogenesis of disease by comparing the effects of bacterial infection with the effects of purified bacterial toxins; the development of non-antibiotics, antiviral drugs, and new drugs generally; and new surgical procedures. Consequently, animal testing and clinical trials are major elements of in vivo research. In vivo testing is often employed over in vitro because it is better suited for observing the overall effects of an experiment on a living subject. In drug discovery, for example, verification of efficacy in vivo is crucial, because in vitro assays can sometimes yield misleading results with drug candidate molecules that are irrelevant in vivo (e.g., because such molecules cannot reach their site of in vivo action, for example as a result of rapid catabolism in the liver).

Optical-based sensing devices

An optical-based sensor for detecting the presence or amount of an analyte using both indicator and reference channels. The sensor has a sensor body with a source of radiation embedded therein. Radiation emitted by the source interacts with indicator membrane indicator molecules proximate the surface of the body. At least one optical characteristic of these indicator molecules varies with analyte concentration. For example, the level of fluorescence of fluorescent indicator molecules or the amount of light absorbed by light-absorbing indicator molecules can vary as a function of analyte concentration. In addition, radiation emitted by the source also interacts with reference membrane indicator molecules proximate the surface of the body. Radiation (e.g., light) emitted or reflected by these indicator molecules enters and is internally reflected in the sensor body. Photosensitive elements within the sensor body generate both indicator channel and reference channel signals to provide an accurate indication of the concentration of the analyte. Preferred embodiments are totally self-contained and are sized and shaped for use in vivo in a human being. Such embodiments preferably include a power source, e.g. an inductor, which powers the source of radiation using external means, as well as a transmitter, e.g. an inductor, to transmit to external pickup means the signal representing the level of analyte.
Owner:SENSEONICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products