Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

17378results about "Material analysis by observing effect on chemical indicator" patented technology

Optical-based sensing devices

An optical-based sensor for detecting the presence or amount of an analyte using both indicator and reference channels. The sensor has a sensor body with a source of radiation embedded therein. Radiation emitted by the source interacts with indicator membrane indicator molecules proximate the surface of the body. At least one optical characteristic of these indicator molecules varies with analyte concentration. For example, the level of fluorescence of fluorescent indicator molecules or the amount of light absorbed by light-absorbing indicator molecules can vary as a function of analyte concentration. In addition, radiation emitted by the source also interacts with reference membrane indicator molecules proximate the surface of the body. Radiation (e.g., light) emitted or reflected by these indicator molecules enters and is internally reflected in the sensor body. Photosensitive elements within the sensor body generate both indicator channel and reference channel signals to provide an accurate indication of the concentration of the analyte. Preferred embodiments are totally self-contained and are sized and shaped for use in vivo in a human being. Such embodiments preferably include a power source, e.g. an inductor, which powers the source of radiation using external means, as well as a transmitter, e.g. an inductor, to transmit to external pickup means the signal representing the level of analyte.
Owner:SENSEONICS INC

Target analyte sensors utilizing microspheres

A microsphere-based analytic chemistry system and method for making the same is disclosed in which microspheres or particles carrying bioactive agents may be combined randomly or in ordered fashion and dispersed on a substrate to form an array while maintaining the ability to identify the location of bioactive agents and particles within the array using an optically interrogatable, optical signature encoding scheme. A wide variety of modified substrates may be employed which provide either discrete or non-discrete sites for accommodating the microspheres in either random or patterned distributions. The substrates may be constructed from a variety of materials to form either two-dimensional or three-dimensional configurations. In a preferred embodiment, a modified fiber optic bundle or array is employed as a substrate to produce a high density array. The disclosed system and method have utility for detecting target analytes and screening large libraries of bioactive agents.
Owner:TRUSTEES OF TUFTS COLLEGETHE

Integrated Lancing and Measurement Device

An integrated lancing and measurement device is provided comprising a sensor designed to determine the amount and / or concentration of analyte in a biological fluid having a volume of less than about 1 μL. A piercing member is adapted to pierce and retract from a site on the patient to cause the fluid to flow therefrom, and the sensor is positioned adjacent to the site on the patient so as to receive the fluid flowing from the site to generate an electrical signal indicative of the concentration of the analyte in the fluid. The sensor is comprised of a working electrode comprising an analyte-responsive enzyme and a redox mediator, and a counter electrode. An analyte monitor is operatively connected to the sensor and adapted to measure the signal generated by the sensor. Also provided are analyte measuring methods that optionally employ the integrated lancing and measurement device.
Owner:ABBOTT DIABETES CARE INC

Microfluidic system with integrated permeable membrane

A microfluidic system for performing chemical reactions or biochemical, biological, or chemical assays utilizing a microfabricated device or “chip.” The system may include, among others, an integrated membrane fabricated from a chemically inert material whose permeability for gases, liquids, cells, and specific molecules, etc. can be selected for optimum results in a desired application.
Owner:CYTODISCOVERY

Method for determining concentration of an analyte in a test strip

The present invention provides a method of measuring an analyte, such as glucose in a fluid sample, such as whole blood, by a reflectance reading device. The method includes making periodic intermediate calculations of analyte level and dynamically ascertaining when an analytical reaction has reached an end point. Once stable, the process stops making periodic calculations and reports the final, actual glucose concentration. According to an exemplary embodiment, the method is performed by a reflectance photometer using an analytical test strip containing reagents that react with an analyte of interest in the test fluid. The end point is determined by calculating an intermediate analyte level of the testing element at predetermined intervals and calculating a ratio value corresponding to the (n)th measurement to an (n-5)th measurement. When two consecutive ratio values are less than or equal to a predetermined value, the end point is deemed reached and the final analyte level ascertained.
Owner:TRIVIDIA HEALTH

Body fluid testing component for simultaneous analyte detection

An analyte testing device is provided for use with a mobile processing device having a camera with a lens, a processor for processing an image captured by the lens. The analyte testing device comprises a casing and a test strip positioner. The test strip positioner positions an analyte containing test strip adjacent to the camera lens to permit the camera to capture an image of the analyte containing test strip. A light source is disposed within the casing. The light source is positioned within the casing to illuminate the analyte containing test strip to facilitate the capture of the image of the test strip. Software is contained within the mobile processing device for performing a quantitative analysis of at least one analyte from the captured image, and providing an output of the results of the quantitative analysis.
Owner:4A MEDICOM +1

Method and system for monitoring smart structures utilizing distributed optical sensors

A monitoring system and method for monitoring a predetermined set of physical characteristics associated with a structure using the monitoring system. The system is distributed in the structure and comprises a distributed optical sensing device (30), further comprising a fiber optic cable (20, 22); a light source (18a) operatively in communication with the fiber optic cable (20, 22); a light detection device (18b), operatively in communication with the fiber optic cable (20, 22), for measuring the light received at the light detection device (18b) from the fiber optic cable (20, 22); and a data processor (18) capable of using the light measured to calculate a predetermined set of physical parameters describing the predetermined set of physical characteristics.
Owner:ZIEBEL AS

Reading devices and assay devices for use therewith

An assay result reader, for use in conjunction with an assay device comprising a porous liquid-permeable carrier in the form of a strip or sheet through the thickness of which electromagnetic radiation is transmissible, the carrier including a detection zone in which an assay result is revealed by specific binding of a detectable material directly or indirectly to a binding agent immobilized in the detection zone, detection of the detectable material being effected by determining the extent to which electromagnetic radiation transmitted through the thickness of said carrier is attenuated by the presence of the detectable material bound in the detection zone.
Owner:INVERNESS SWITZERLAND GMBH

Optical-based sensing devices

An optical-based sensor for detecting the presence or amount of an analyte using both indicator and reference channels. The sensor has a sensor body with a source of radiation embedded therein. Radiation emitted by the source interacts with indicator membrane indicator molecules proximate the surface of the body. At least one optical characteristic of these indicator molecules varies with analyte concentration. For example, the level of fluorescence of fluorescent indicator molecules or the amount of light absorbed by light-absorbing indicator molecules can vary as a function of analyte concentration. In addition, radiation emitted by the source also interacts with reference membrane indicator molecules proximate the surface of the body. Radiation (e.g., light) emitted or reflected by these indicator molecules enters and is internally reflected in the sensor body. Photosensitive elements within the sensor body generate both indicator channel and reference channel signals to provide an accurate indication of the concentration of the analyte. Preferred embodiments are totally self-contained and are sized and shaped for use in vivo in a human being. Such embodiments preferably include a power source, e.g. an inductor, which powers the source of radiation using external means, as well as a transmitter, e.g. an inductor, to transmit to external pickup means the signal representing the level of analyte.
Owner:SENSEONICS INC

Method of determining the nucleotide sequence of oligonucleotides and DNA molecules

The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
Owner:ALBERTA UNIV OF +1

Self-encoding fiber optic sensor

Self-encoding microspheres having distinct characteristic optical response signatures to specific target analytes may be mixed together while the ability is retained to identify the sensor type and location of each sensor in a random dispersion of large numbers of such sensors in a sensor array using an optically interrogatable encoding scheme, resulting in a microsphere-based analytic chemistry system. Individual microsphere sensors are disposed in microwells at a distal end of a fiber bundle and are optically coupled to discrete fibers or groups of fibers within the bundle to form an optical fiber bundle sensor. The identities of the individual sensors in the array are self-encoded by exposing the array to a reference analyte while illuminating the array with excitation light energy. A single sensor array may carry thousands of discrete sensing elements whose combined signal provides for substantial improvements in sensor detection limits, response times and signal-to-noise ratios.
Owner:TRUSTEES OF TUFTS COLLEGE

Labeled nucleoside polyphosphates

The present invention describes new compositions of matter in the form of labeled nucleoside polyphosphates with four or more phosphates. In addition compositions of nucleoside polyphosphates with four or more phosphates that are substrates for nucleic acid polymerases with enhanced substrate properties and methods of using these nucleoside polyphosphates for nucleic acid detection, characterization and quantification are described. The compositions provided by this invention include nucleoside polyphosphate, dideoxynucleoside polyphosphate, or deoxynucleoside polyphosphate analogues which have colorimetric, chemiluminescent, or fluorescent moieties, mass tags or an electrochemical tags attached to the terminal-phosphate. When a nucleic acid polymerase uses this analogue as a substrate, an enzyme-activatable label would be present on the inorganic polyphosphate by-product of phosphoryl transfer. Removal of the polyphosphate product of phosphoryl transfer via phosphate or polyphosphate transferring enzyme leads to a detectable change in the label attached thereon. When the polymerase assay is performed in the presence of a phosphatase, there is provided a convenient method for real-time monitoring of DNA or RNA synthesis and detection of a target nucleic acid.
Owner:GLOBAL LIFE SCI SOLUTIONS USA LLC

Methods for detection and quantification of analytes in complex mixtures

The invention provides a diverse population of uniquely labeled probes, containing about thirty or more target specific nucleic acid probes each attached to a unique label bound to a nucleic acid. Also provided is a method of producing a population of uniquely labeled nucleic acid probes. The method consists of (a) synthesizing a population of target specific nucleic acid probes each having a different specifier; (b) synthesizing a corresponding population of anti-genedigits each having a unique label, the population having a diversity sufficient to uniquely hybridize to genedigits within the specifiers, and (c) hybridizing the populations of target nucleic acid probes to the anti-genedigits, to produce a population in which each of the target specific probes is uniquely labeled. Also provided is a method of detecting a nucleic acid analyte.
Owner:INSTITUTE FOR SYSTEMS BIOLOGY

Apparatus for analyzing biologic fluids

An apparatus for analyzing a sample of biologic fluid quiescently residing within a chamber is provided. The apparatus includes a light source, a positioner, a mechanism for determining the volume of a sample field, and an image dissector. The light source is operable to illuminate a sample field of known, or ascertainable, area. The positioner is operable to selectively change the position of one of the chamber or the light source relative to the other, thereby permitting selective illumination of all regions of the sample. The mechanism for determining the volume of a sample field can determine the volume of a sample field illuminated by the light source. The image dissector is operable to convert an image of light passing through or emanating from the sample field into an electronic data format.
Owner:WARDLAW PARTNERS +2

Cell flow apparatus and method for real-time of cellular responses

An apparatus and method for real-time measurement of a cellular response of a test compound or series of test compounds (303) on a flowing suspension of cells (349), in which a homogeneous suspension of each member of a series of cell types (349) is combined with a concentration of a test compound (303), directed through a detection zone (355), and a cellular response of the living cells is measured in real time as the cells in the test mixture are flowing through the detection zone (355). The apparatus may be used in automated screening of libraries of compounds, and is capable of real-time variation of concentrations of test and standard compounds and generation of dose / response profiles within a short time span.
Owner:CAPLIPER LIFE SCI INC

Optical chemical/biochemical sensor

The invention relates to a planar ATR and evanescently exited luminescence optical sensor platform, consisting of a transducer and a recognition layer, wherein changes in the effective refractive index of the recognition layer are converted into a measurable variable in accordance with the integrated-optical light pointer principle. The invention relates also to the use of the method and to the method itself using the sensor platform, for example in label-free biosensory analysis.
Owner:ZEPTOSENS

Faceted structure, article, sensor device, and method

A faceted structure is provided that includes a crystalline composition comprising a metal nitride. The metal comprises one or more of aluminum, boron, indium, or gallium. The crystalline composition has at least one exposed surface that is a grain boundary, an etched surface, or a naturally formed facet, and the surface has the same crystallographic orientation of a substrate on which the crystalline composition is grown. A sensor device is provided that includes a faceted structure. Associated methods of making and using the faceted structure in a sensor device are provided.
Owner:MORPHO DETECTION INC

In-situ method of analyzing cells

InactiveUS6165734AWidespread samplingEasy to masterRaman/scattering spectroscopyRadiation pyrometryHistological stainingBiology
A method of in situ analysis of a biological sample comprising the steps of (a) staining the biological sample with N stains of which a first stain is selected from the group consisting of a first immunohistochemical stain, a first histological stain and a first DNA ploidy stain, and a second stain is selected from the group consisting of a second immunohistochemical stain, a second histological stain and a second DNA ploidy stain, with provisions that N is an integer greater than three and further that (i) if the first stain is the first immunohistochemical stain then the second stain is either the second histological stain or the second DNA ploidy stain; (ii) if the first stain is the first histological stain then the second stain is either the second immunohistochemical stain or the second DNA ploidy stain; whereas (iii) if the first stain is the first DNA ploidy stain then the second stain is either the second immunohistochemical stain or the second histological stain; and (b) using a spectral data collection device for collecting spectral data from the biological sample, the spectral data collection device and the N stains are selected such that a spectral component associated with each of the N stains is collectable.
Owner:APPLIED SPECTRAL IMAGING

Apparatus and method for sequencing a nucleic acid

Disclosed herein are methods and apparatuses for sequencing a nucleic acid. These methods permit a very large number of independent sequencing reactions to be arrayed in parallel, permitting simultaneous sequencing of a very large number (>10,000) of different oligonucleotides.
Owner:454 LIFE SCIENCES CORP

Synchronized analyte testing system

An analyte detection system is provided with calibration information uniquely specific to the set of test strips to which the sample is to be applied. The calibration information may be stored in permanent memory of the testing device, such that the device is discarded after use of all the test strips in a kit, or it may be stored in a calibration chip accompanying the set of test strips and distributed therewith, thereby enabling re-use of the testing device with a different set of test strips and associated calibration chip.
Owner:ROCHE DIABETES CARE INC

Fiber optic device for sensing analytes

A device for sensing analyte concentration, and in particular glucose concentration, in vivo or in vitro is disclosed. An optical conduit, preferably an optical fiber has an optical system at the proximal end of the optical conduit. A sensing element is attached to the distal end of the optical conduit, and comprises at least one binding protein adapted to bind with at least one target analyte. The sensing element further comprises at least one reporter group that undergoes a luminescence change with changing analyte concentrations. Optionally, the sensing element includes reference groups with luminescence properties that are substantially unchanged by variations in the analyte concentrations.
Owner:BECTON DICKINSON & CO

Chemiluminescence-based microfluidic biochip

InactiveUS6949377B2Accurate and reproducible resultSimple and rapid and POCT applicationBioreactor/fermenter combinationsBiological substance pretreatmentsPositive pressureBiochip
The disclosure describes how to use luminescence detection mechanism, move microfluid, and control multiple-step biochemical reactions in closed confined microfluidic biochip platform. More particularly, a self-contained disposable biochip with patterned microchannels and compartments having storage means for storing a plurality of samples, reagents, and luminescent substrates. At least one external microactuator in the biochip system produces positive pressure and automates multiple-step reactions in microfluidic platforms for clinical chemistry, cell biology, immunoassay and nucleic acid analysis. The method comprises the steps of transferring sequentially at least one of samples, reagents, and then luminescent substrate from compartments through microchannels to reaction sites. The luminescent substrates react with probes to form a probe complex resulting into luminescence, which is detected by an optical detector.
Owner:HO WINSTON Z

Methods and algorithms for cell enumeration in low-cost cytometer

The enumeration of cells in fluids by flow cytometry is widely used across many disciplines such as assessment of leukocyte subsets in different bodily fluids or of bacterial contamination in environmental samples, food products and bodily fluids. For many applications the cost, size and complexity of the instruments prevents wider use, for example, CD4 analysis in HIV monitoring in resource-poor countries. The novel device, methods and algorithms disclosed herein largely overcome these limitations. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. The labeled sample, in a chamber or cuvet, is placed between two wedge-shaped magnets to selectively move the magnetically labeled cells to the observation surface of the cuvet. An LED illuminates the cells and a CCD camera captures the images of the fluorescent light emitted by the target cells. Image analysis performed with a novel algorithm provides a count of the cells on the surface that can be related to the target cell concentration of the original sample. The compact cytometer system provides a rugged, affordable and easy-to-use technique, which can be used in remote locations.
Owner:UNIVERSITY OF TWENTE

Optical sensor and method of operation

A multiple single use optical sensor includes a series of continuous sensor stripes deposited on a substrate web. At least one sample chamber is adapted to extend transversely across a discrete portion of the series of sensor stripes to facilitate analysis of a sample disposed therein. The sample chamber may be moved, or additional sample chambers provided to enable subsequent measurements of additional samples at unused discrete portions of the sensor stripes. The continuous nature of the sensor stripes provides consistency along the lengths thereof to enable calibration data obtained from one discrete portion of the sensor stripes to be utilized for testing an unknown sample an other discrete portion of the sensor stripes. This advantageously eliminates the need for any particular discrete portion of the sensor stripes to be contacted by more than one sample, for improved sensor performance.
Owner:SIEMENS HEALTHCARE DIAGNOSTICS INC

Analyte concentration determination meters and methods of using the same

Devices and methods for determining the concentration of an analyte in a physiological sample are provided. The subject devices are meters characterized by having an internal structure that includes a test strip selecting element having a continuously reduced cross-sectional area configured to select a single test strip at a time and means for determining the concentration of an analyte in a physiological sample applied to the selected test strip. In the subject methods for containing at least one test strip and dispensing a single test strip at a time, a meter having at least one test strip contained therein is provided. The meter is positioned with respect to the ground to cause the single test strip to move from a contained position to a dispensed position. The subject invention also includes kits for use in practicing the subject methods.
Owner:LIFESCAN IP HLDG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products