Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1018 results about "Nucleic Acid Probes" patented technology

Related to nucleic acid probes: DNA probe, Nucleic acid hybridization. any of a group of organic substances found in the chromosomes of living cells and viruses that play a central role in the storage and replication of hereditary information and in the expression of this information through protein synthesis.

Methods for detection and quantification of analytes in complex mixtures

The invention provides a diverse population of uniquely labeled probes, containing about thirty or more target specific nucleic acid probes each attached to a unique label bound to a nucleic acid. Also provided is a method of producing a population of uniquely labeled nucleic acid probes. The method consists of (a) synthesizing a population of target specific nucleic acid probes each having a different specifier; (b) synthesizing a corresponding population of anti-genedigits each having a unique label, the population having a diversity sufficient to uniquely hybridize to genedigits within the specifiers, and (c) hybridizing the populations of target nucleic acid probes to the anti-genedigits, to produce a population in which each of the target specific probes is uniquely labeled. Also provided is a method of detecting a nucleic acid analyte.
Owner:INSTITUTE FOR SYSTEMS BIOLOGY

Methods for suppressing the binding of detectable probes to non-target sequences in hybridization assays

This invention relates to methods, kits and compositions suitable for the improved detection, analysis and quantitation of nucleic acid target sequences using probe based hybridization assays. The invention is more specifically directed to methods, kits and compositions suitable for suppressing the binding of detectable nucleic acid probes or detectable PNA probes to non-target nucleic acid sequences in an assay for a target nucleic acid sequence to thereby improve the reliability, sensitivity and specificity of the assay. The methods, kits and compositions of this invention are particularly well suited to the detection and analysis of nucleic acid point mutations.
Owner:APPL BIOSYSTEMS INC +1

Hybridization assisted nanopore sequencing

A method of employing a nanopore structure in a manner that allows the detection of the positions (relative and / or absolute) of nucleic acid probes that are hybridized onto a single-stranded nucleic acid molecule. In accordance with the method the strand of interest is hybridized with a probe having a known sequence. The strand and hybridized probes are translocated through a nanopore. The fluctuations in current measured across the nanopore will vary as a function of time corresponding to the passing of a probe attachment point along the strand. These fluctuations in current are then used to determine the attachment positions of the probes along the strand of interest. This probe position data is then fed into a computer algorithm that returns the sequence of the strand of interest.
Owner:NABSYS 2 0 +1

Systems and methods for nucleic acid sequencing

The present invention relates to systems and methods for sequencing nucleic acids, including sequencing nucleic acids in fluidic droplets. In one set of embodiments, the method employs sequencing by hybridization using droplets such as microfluidic droplets. In some embodiments, droplets are formed which include a target nucleic acid, a nucleic acid probe, and at least one identification element, such as a fluorescent particle. The nucleic acid probes that hybridize to the target nucleic acid are determined, in some instances, by determining the at least one identification element. The nucleic acid probes that hybridize to the target nucleic acid may be used to determine the sequence of the target nucleic acid. In certain instances, the microfluidic droplets are provided with reagents that modify the nucleic acid probe. In some cases, a droplet, such as those described above, is deformed such that the components of the droplets individually pass a target area.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Particle-assisted nucleic acid sequencing

This invention generally relates to particle-assisted nucleic acid sequencing. In some embodiments, sequencing may be performed in a microfluidic device, which can offer desirable properties, for example, minimal use of reagents, facile scale-up, and / or high throughput. In one embodiment, a target nucleic acid may be exposed to particles having nucleic acid probes. By determining the binding of the particles to the target nucleic acid, the sequence of the target nucleic acid (or at least a portion of the target nucleic acid) can be determined. The target nucleic acid may be encapsulated within a fluidic droplet with the particles having nucleic acid probes, in certain instances. In some cases, the sequence of the target nucleic acid may be determined, based on binding of the particles, using sequencing by hybridization (SBH) algorithms or other known techniques.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Method of analyzing DNA sequence using field-effect device, and base sequence analyzer

Since conventional DNA sequence analyzing technologies are based on the fundamental principle of fluorescent detection, expensive, complex optical systems and laser sources have been necessary.A field-effect device for gene detection of the present invention analyzes a base sequence by immobilizing a single-strand nucleic acid probe at a gate portion, inducing hybridization at the gate portion to form a double-stranded DNA, inducing elongation reaction by adding a DNA polymerase and one of the substrates, and measuring the electrical characteristic of the field-effect device caused by elongation reaction.Since the elongation reaction of one base induced at the gate portion can be directly converted to an electrical signal, expensive lasers or complex optical systems are not needed. Thus, a small gene polymorphism detection system that can conduct measurement at high precision can be provided.
Owner:NAT INST FOR MATERIALS SCI

Spatially distinguished, multiplex nucleic acid analysis of biological specimens

A method for spatially tagging nucleic acids of a biological specimen, including steps of (a) providing a solid support comprising different nucleic acid probes that are randomly located on the solid support, wherein the different nucleic acid probes each includes a barcode sequence that differs from the barcode sequence of other randomly located probes on the solid support; (b) performing a nucleic acid detection reaction on the solid support to locate the barcode sequences on the solid support; (c) contacting a biological specimen with the solid support that has the randomly located probes; (d) hybridizing the randomly located probes to target nucleic acids from portions of the biological specimen; and (e) modifying the randomly located probes that are hybridized to the target nucleic acids, thereby producing modified probes that include the barcode sequences and a target specific modification, thereby spatially tagging the nucleic acids of the biological specimen.
Owner:X GENOMICS SWEDEN AB +1

Random array of micro-spheres for the analysis of nucleic acids

A method of identifying nucleic acid samples comprising: providing a mircoarray including a substrate coated with a composition including a population of micro-spheres dispersed in a fluid containing a gelling agent or a precursor to a gelling agent and immobilized at random positions on the substrate, at least one sub-population of said population micro-spheres containing an optical barcode generated from at least one colorant associated with the micro-spheres and including a nucleic acid probe sequence; contacting said array with a target nucleic acid sequence; and detecting the color barcode of said sub-population of micro-spheres due to the interaction of said probe nucleic acid sequence and said target nucleic acid sequence.
Owner:CARESTREAM HEALTH INC

High-throughput methods for detecting DNA methylation

The present invention provides a method of hybridization, differential methylation hybridization (DMH) for high throughput methylation analysis of multiple CpG island loci. DMH utilizes nucleic acid probes prepared from a cell sample to screen numerous CpG dinucleotide rich fragments affixed on a screening array. Positive hybridization signals indicate the presence of methylated sites. Methods of preparing the hybridization probes and screening array are also provided.
Owner:UNIVERSITY OF MISSOURI

Gene detection field-effect device and method of analyzing gene polymorphism therewith

A gene detection field-effect device provided with an insulation film (2), a semiconductor substrate (3), and a reference electrode (4), includes: (a) the insulation film (2) including a nucleic acid probe (5) immobilized on one of the surfaces thereof and is in contact with a sample solution (6) containing at least one type of a target gene (601) for detection and analysis; (b) the semiconductor substrate (3) being installed so as to abut against the other surface of the insulation film (2); and (c) the reference electrode (4) being provided in the sample solution (6).
Owner:NAT INST FOR MATERIALS SCI

Method of Analyzing Dna Sequence Using Field-Effect Device, and Base Sequence Analyzer

Since conventional DNA sequence analyzing technologies are based on the fundamental principle of fluorescent detection, expensive, complex optical systems and laser sources have been necessary.A field-effect device for gene detection of the present invention analyzes a base sequence by immobilizing a single-strand nucleic acid probe at a gate portion, inducing hybridization at the gate portion to form a double-stranded DNA, inducing elongation reaction by adding a DNA polymerase and one of the substrates, and measuring the electrical characteristic of the field-effect device caused by elongation reaction.Since the elongation reaction of one base induced at the gate portion can be directly converted to an electrical signal, expensive lasers or complex optical systems are not needed. Thus, a small gene polymorphism detection system that can conduct measurement at high precision can be provided.
Owner:NAT INST FOR MATERIALS SCI

Process to create biomolecule and/or cellular arrays on metal surfaces and product produced thereby

This invention provides isolated nucleic acid molecules encoding a mammalian glycine transporter, isolated nucleic acid molecules encoding a human glycine transporter, isolated proteins which are mammalian glycine transporter proteins, isolated proteins which are human glycine transporter proteins, vectors comprising isolated nucleic acid molecules encoding a mammalian or a human glycine transporter, mammalian cells comprising such vectors, antibodies directed to a mammamlian glycine transporter, antibodies directed to a human glycine transporter, nucleic acid probes useful for detecting nucleic acid encoding mammalian glycine transporter, nucleic acid probes useful for detecting nucleic acid encoding human glycine transporter, antisense oligonucleotides complementary to any sequences of a nucleic acid molecule which encodes a mammalian glycine transporter, antisense oligonucleotides complementary to any sequences of a nucleic said molecule which encodes a human glycine transporter, pharmaceutical compounds related to mammalian glycine transporter and nonhuman transporter, pharmaceutical compounds related to human glycine transporter and nonhuman transgenic animals which express DNA encoding a normal or a mutant mammalian or human glycine transorter. This invention also provides methods for determining ligand binding, detecting expression, drug screening, and treatments for alleviating abnormalities associated with mammalian glycine transporter. This invention further provides methods for determining ligand binding, detecting expression, drug screening, and treatments for alleviating abnormalities associated with human glycine transporter.
Owner:WISCONSIN ALUMNI RES FOUND

PCA3, PCA3 genes, and methods of use

The present invention relates, in general, to a prostate-specific antigen, PCA3. In particular, the present invention relates to nucleic acid molecules coding for the PCA3 protein; purified PCA3 proteins and polypeptides; recombinant nucleic acid molecules; cells containing the recombinant nucleic acid molecules; antibodies having binding affinity specifically to PCA3 proteins and polypeptides; hybridomas containing the antibodies; nucleic acid probes for the detection of nucleic acids encoding PCA3 proteins; a method of detecting nucleic acids encoding PCA3 proteins or polypeptides in a sample; kits containing nucleic acid probes or antibodies; bioassays using the nucleic acid sequence, protein or antibodies of this invention to diagnose, assess, or prognose a mammal afflicted with prostate cancer; therapeutic uses; and methods of preventing prostate cancer in an animal.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE +1

Multipartite high-affinity nucleic acid probes

The invention provides a collection of probes useful for hybridizing to a target nucleic acid. The probes associate with each other, binding with high affinity to the target nucleic acid, to form three-way junctions and other complexes. At least one of the probes in each collection includes a nucleic acid analog. Methods using the probes in hybridization and as primers are also provided.
Owner:APPL BIOSYSTEMS INC

System and method for inhibiting the decryption of a nucleic acid probe sequence used for the detection of a specific nucleic acid

InactiveUS20060073487A1Reduce or impede a person's ability to designAvoid identificationSugar derivativesMicrobiological testing/measurementGenetic AnomalyNucleic Acid Probes
Sequence-specific nucleic acid hybridization assays are used for the detection of specific genetic sequences as indicators of genetic anomalies, mutations, and disease propensity. In addition, they are used for the detection of various biological agents and infectious pathogens. Because a complementary probe or nucleic acid sequence is required to detect a sequence of interest in a hybridization-based assay, nucleic acid sequencing techniques can rapidly determine the specific probe sequence being used for detection. This allows reverse engineered assays to be produced rapidly. In addition, it enables the circumvention of hybridization-based assays for biological agent or infectious pathogen detection by providing the information necessary to create or alter nucleic acid sequences to produce false positives or false negatives. The present invention provides methods and compositions for inhibiting the identification of specific detection sequences. More specifically, the invention provides masking sequences that mask the identity of specific detection sequences.
Owner:RADIX BIOSOLUTIONS

Particle-assisted nucleic acid sequencing

This invention generally relates to particle-assisted nucleic acid sequencing. In some embodiments, sequencing may be performed in a microfluidic device, which can offer desirable properties, for example, minimal use of reagents, facile scale-up, and / or high throughput. In one embodiment, a target nucleic acid may be exposed to particles having nucleic acid probes. By determining the binding of the particles to the target nucleic acid, the sequence of the target nucleic acid (or at least a portion of the target nucleic acid) can be determined. The target nucleic acid may be encapsulated within a fluidic droplet with the particles having nucleic acid probes, in certain instances. In some cases, the sequence of the target nucleic acid may be determined, based on binding of the particles, using sequencing by hybridization (SBH) algorithms or other known techniques.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Probe, probe set, probe-immobilized carrier, and genetic testing method

A nucleic acid probe for classification of pathogenic bacterial species is capable of collectively detecting bacterial strains of the same species and differentially detecting them from other bacterial species. Any one of the base sequences of SEQ ID NOS. 90 to 91 and complementary or modified sequences thereof or a combination of at least two of them is used for detecting the gene of an infectious disease pathogenic bacterium.
Owner:CANON KK

Probe, probe set, probe-immobilized carrier, and genetic testing method

A nucleic acid probe for classification of pathogenic bacterial species is capable of collectively detecting bacterial strains of the same species and differentially detecting them from other bacterial species. Any one of the base sequences of SEQ ID NOS. 84 to 86 and complementary or modified sequences thereof or a combination of at least two of them is used for detecting the gene of an infectious disease pathogenic bacterium.
Owner:CANON KK

Probe, probe set, probe-immobilized carrier, and genetic testing method

A nucleic acid probe for classification of pathogenic bacterial species is capable of collectively detecting bacterial strains of the same species and differentially detecting them from other bacterial species. Any one of the base sequences of SEQ ID NOS. 76 to 77 and complementary or modified sequences thereof or a combination of at least two of them is used for detecting the gene of an infectious disease pathogenic bacterium.
Owner:CANON KK

Probe, probe set, probe-immobilized carrier, and genetic testing method

A nucleic acid probe for classification of pathogenic bacterial species is capable of collectively detecting bacterial strains of the same species and differentially detecting them from other bacterial species. Any one of the base sequences of SEQ ID NOS. 70 to 72 and complementary or modified sequences thereof or a combination of at least two of them is used for detecting the gene of an infectious disease pathogenic bacterium.
Owner:CANON KK

Methods for detection and quantification of analytes in complex mixtures

The invention provides a diverse population of uniquely labeled probes, containing about thirty or more target specific nucleic acid probes each attached to a unique label bound to a nucleic acid. Also provided is a method of producing a population of uniquely labeled nucleic acid probes. The method consists of (a) synthesizing a population of target specific nucleic acid probes each having a different specifier; (b) synthesizing a corresponding population of anti-genedigits each having a unique label, the population having a diversity sufficient to uniquely hybridize to genedigits within the specifiers, and (c) hybridizing the populations of target nucleic acid probes to the anti-genedigits, to produce a population in which each of the target specific probes is uniquely labeled. Also provided is a method of detecting a nucleic acid analyte. The method consists of (a) contacting a mixture of nucleic acid analytes under conditions sufficient for hybridization with a plurality of target specific nucleic acid probes each having a different specifier; (b) contacting the mixture under conditions sufficient for hybridization with a corresponding plurality of anti-genedigits each having a unique label, the plurality of anti-genedigits having a diversity sufficient to uniquely hybridize to genedigits within the specifiers, and (c) uniquely detecting a hybridized complex between one or more analytes in the mixture, a target specific probe, and an anti-genedigit.
Owner:INSTITUTE FOR SYSTEMS BIOLOGY

Nucleic acid detection cassette and nucleic acid detection device

A nucleic acid detection cassette includes a cassette body, a nucleic acid detection region disposed in the cassette body, a first channel disposed in the cassette body, a second channel disposed in the cassette body. The nucleic acid detection region, in which a nucleic acid probe is immobilized, has a reagent inflow port, to which the first channel is connected, and a reagent outflow port, to which the second channel is connected. The nucleic acid detection cassette further includes a reagent injection portion which injects a reagent into the first channel, and a nucleic acid pretreatment region which is disposed in the first channel and which performs pretreatment for the detection of a nucleic acid. The first channel, the second channel, the nucleic acid detection region, the nucleic acid pretreatment region, and the reagent injection portion are sealed.
Owner:KK TOSHIBA

Hybridization chain reaction amplification for in situ imaging

The present invention relates to the use of fluorescently labeled nucleic acid probes to identify and image analytes in a biological sample. In the preferred embodiments, a probe is provided that comprises a target region able to specifically bind an analyte of interest and an initiator region that is able to initiate polymerization of nucleic acid monomers. After contacting a sample with the probe, labeled monomers are provided that form a tethered polymer. Triggered probes and self-quenching monomers can be used to provide active background suppression.
Owner:CALIFORNIA INST OF TECH

Nucleic acid detection cassette and nucleic acid detection device

A nucleic acid detection cassette includes a cassette body, a nucleic acid detection region disposed in the cassette body, a first channel disposed in the cassette body, a second channel disposed in the cassette body. The nucleic acid detection region, in which a nucleic acid probe is immobilized, has a reagent inflow port, to which the first channel is connected, and a reagent outflow port, to which the second channel is connected. The nucleic acid detection cassette further includes a reagent injection portion which injects a reagent into the first channel, and a nucleic acid pretreatment region which is disposed in the first channel and which performs pretreatment for the detection of a nucleic acid. The first channel, the second channel, the nucleic acid detection region, the nucleic acid pretreatment region, and the reagent injection portion are sealed.
Owner:KK TOSHIBA

Methods for detecting fetal abnormality

The invention relates to a method of identifying fetal abnormality from a maternal blood sample by capturing an image of a fetal nucleated red blood cell obtained from the maternal blood sample; inputting probe intensities for a plurality of nucleic acid probes that bind fetal nucleic acids of interest; analyzing the probe intensities; and generating a diagnostic output according to results of the analysis. In some embodiments, the probes are specific to a chromosome.
Owner:THE GENERAL HOSPITAL CORP +2

Probe, probe set, probe-immobilized carrier, and genetic testing method

A nucleic acid probe for classification of pathogenic bacterial species is capable of collectively detecting bacterial strains of the same species and differentially detecting them from other bacterial species. Any one of the base sequences of SEQ ID NOS. 68 to 69 and complementary or modified sequences thereof or a combination of at least two of them is used for detecting the gene of an infectious disease pathogenic bacterium.
Owner:CANON KK

Probe, probe set, probe-immobilized carrier, and genetic testing method

A nucleic acid probe for classification of pathogenic bacterial species is capable of collectively detecting bacterial strains of the same species and differentially detecting them from other bacterial species. Any one of the base sequences of SEQ ID NOS. 87 to 89 and complementary or modified sequences thereof or a combination of at least two of them is used for detecting the gene of an infectious disease pathogenic bacterium.
Owner:CANON KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products